Learn more

The results below are complete, since the LMFDB contains all transitive groups of degree at most 47 (except 32)

Refine search


Results (50 matches)

  displayed columns for results
Label Name Order Parity Solvable Subfields Low Degree Siblings
8T1 $C_8$ $8$ $-1$ $C_2$, $C_4$
8T2 $C_4\times C_2$ $8$ $1$ $C_2$ x 3, $C_4$ x 2, $C_2^2$
8T3 $C_2^3$ $8$ $1$ $C_2$ x 7, $C_2^2$ x 7
8T4 $D_4$ $8$ $1$ $C_2$ x 3, $C_2^2$, $D_{4}$ x 2 4T3 x 2
8T5 $Q_8$ $8$ $1$ $C_2$ x 3, $C_2^2$
8T6 $D_{8}$ $16$ $-1$ $C_2$, $D_{4}$ 8T6, 16T13
8T7 $C_8:C_2$ $16$ $-1$ $C_2$, $C_4$ 16T6
8T8 $QD_{16}$ $16$ $-1$ $C_2$, $D_{4}$ 16T12
8T9 $D_4\times C_2$ $16$ $1$ $C_2$ x 3, $C_2^2$, $D_{4}$ x 2 8T9 x 3, 16T9
8T10 $C_2^2:C_4$ $16$ $1$ $C_2$, $C_4$, $D_{4}$ x 2 8T10, 16T10
8T11 $Q_8:C_2$ $16$ $1$ $C_2$ x 3, $C_2^2$ 8T11 x 2, 16T11
8T12 $\SL(2,3)$ $24$ $1$ $A_4$ 24T7
8T13 $A_4\times C_2$ $24$ $1$ $C_2$, $A_4$ 6T6, 12T6, 12T7, 24T9
8T14 $S_4$ $24$ $1$ $C_2$, $S_4$ 4T5, 6T7, 6T8, 12T8, 12T9, 24T10
8T15 $Z_8 : Z_8^\times$ $32$ $-1$ $C_2$, $D_{4}$ 8T15, 16T35, 16T38 x 2, 16T45, 32T21
8T16 $(C_8:C_2):C_2$ $32$ $-1$ $C_2$, $C_4$ 8T16, 16T36, 16T41 x 2, 32T22
8T17 $C_4\wr C_2$ $32$ $-1$ $C_2$, $D_{4}$ 8T17, 16T28, 16T42, 32T14
8T18 $C_2^2 \wr C_2$ $32$ $1$ $C_2$, $D_{4}$ x 3 8T18 x 7, 16T39 x 6, 16T46, 32T24
8T19 $C_2^3 : C_4 $ $32$ $1$ $C_2$, $D_{4}$ 8T19, 8T20, 8T21, 16T33 x 2, 16T52, 16T53, 32T19
8T20 $C_2^3: C_4$ $32$ $1$ $C_2$, $C_4$ 8T19 x 2, 8T21, 16T33 x 2, 16T52, 16T53, 32T19
8T21 $C_2^3: C_4$ $32$ $-1$ $C_2$ x 3, $C_2^2$ 8T19 x 2, 8T20, 16T33 x 2, 16T52, 16T53, 32T19
8T22 $Q_8:C_2^2$ $32$ $1$ $C_2$ x 3, $C_2^2$ 8T22 x 5, 16T23 x 9, 32T9
8T23 $\textrm{GL(2,3)}$ $48$ $-1$ $S_4$ 8T23, 16T66, 24T22
8T24 $S_4\times C_2$ $48$ $1$ $C_2$, $S_4$ 6T11 x 2, 8T24, 12T21, 12T22, 12T23 x 2, 12T24 x 2, 16T61, 24T46, 24T47, 24T48 x 2
8T25 $C_2^3:C_7$ $56$ $1$ 14T6, 28T11
8T26 $(C_4^2 : C_2):C_2$ $64$ $-1$ $C_2$, $D_{4}$ 8T26 x 3, 16T135 x 2, 16T141 x 2, 16T142 x 2, 16T152 x 2, 32T147 x 2, 32T148 x 2, 32T155, 32T156
8T27 $((C_8 : C_2):C_2):C_2$ $64$ $-1$ $C_2$, $C_4$ 8T27, 8T28 x 2, 16T130, 16T157 x 2, 16T158 x 2, 16T159 x 2, 16T166, 16T170, 16T171, 16T172, 32T138 x 2, 32T139, 32T170, 32T176
8T28 $(((C_4 \times C_2): C_2):C_2):C_2$ $64$ $-1$ $C_2$, $D_{4}$ 8T27 x 2, 8T28, 16T130, 16T157 x 2, 16T158 x 2, 16T159 x 2, 16T166, 16T170, 16T171, 16T172, 32T138 x 2, 32T139, 32T170, 32T176
8T29 $(((C_4 \times C_2): C_2):C_2):C_2$ $64$ $1$ $C_2$, $D_{4}$ 8T29 x 5, 8T31 x 2, 16T127, 16T128 x 3, 16T129 x 3, 16T147, 16T149 x 6, 16T150 x 3, 32T136 x 3, 32T137 x 2, 32T163 x 3
8T30 $(((C_4 \times C_2): C_2):C_2):C_2$ $64$ $-1$ $C_2$, $D_{4}$ 8T30 x 3, 16T143 x 2, 16T167 x 2, 16T168 x 2, 16T169 x 2, 32T157 x 2, 32T177, 32T178
8T31 $(((C_4 \times C_2): C_2):C_2):C_2$ $64$ $-1$ $C_2$ x 3, $C_2^2$ 8T29 x 6, 8T31, 16T127, 16T128 x 3, 16T129 x 3, 16T147, 16T149 x 6, 16T150 x 3, 32T136 x 3, 32T137 x 2, 32T163 x 3
8T32 $((C_2 \times D_4): C_2):C_3$ $96$ $1$ $A_4$ 8T32 x 2, 24T97 x 3, 24T149, 32T420
8T33 $C_2^4:C_6$ $96$ $1$ $C_2$ 8T33, 12T58 x 2, 12T59 x 2, 16T183, 24T181 x 2, 24T182 x 2, 24T183 x 2, 24T184 x 2, 24T185, 24T186, 32T389
8T34 $V_4^2:S_3$ $96$ $1$ $C_2$ 12T66 x 3, 12T67, 12T68 x 3, 12T69, 16T194, 24T195 x 3, 24T196 x 3, 24T197 x 3, 24T198, 24T199, 24T200 x 3, 32T398
8T35 $C_2 \wr C_2\wr C_2$ $128$ $-1$ $C_2$, $D_{4}$ 8T35 x 7, 16T376 x 4, 16T388 x 4, 16T390 x 4, 16T391 x 4, 16T393 x 4, 16T395 x 4, 16T396 x 4, 16T401 x 4, 32T852 x 4, 32T853 x 2, 32T854 x 2, 32T872 x 2, 32T876 x 4, 32T877 x 2, 32T880 x 2, 32T882 x 2, 32T883 x 4, 32T884 x 2, 32T885 x 2
8T36 $C_2^3:(C_7: C_3)$ $168$ $1$ 14T11, 24T283, 28T27, 42T26
8T37 $\PSL(2,7)$ $168$ $1$ 7T5 x 2, 14T10 x 2, 21T14, 24T284, 28T32, 42T37, 42T38 x 2
8T38 $C_2\wr A_4$ $192$ $-1$ $A_4$ 8T38, 16T425, 16T427, 24T288 x 2, 24T425 x 2, 32T2185 x 2
8T39 $C_2^3:S_4$ $192$ $1$ $S_4$ 8T39 x 5, 16T442 x 3, 24T333 x 6, 24T431 x 2, 32T2213 x 2
8T40 $Q_8:S_4$ $192$ $-1$ $S_4$ 8T40, 16T444, 16T445, 24T332 x 2, 24T430 x 2, 32T2215 x 2
8T41 $V_4^2:(S_3\times C_2)$ $192$ $1$ $C_2$ 8T41, 12T108 x 2, 12T109 x 2, 12T110 x 2, 12T111 x 2, 16T435 x 2, 16T436, 24T516 x 2, 24T517 x 2, 24T518 x 2, 24T519 x 2, 24T520 x 2, 24T521 x 2, 24T522 x 2, 24T523, 24T524 x 2, 24T525 x 2, 24T526 x 2, 24T527, 24T528, 24T529, 32T2148, 32T2149 x 2
8T42 $A_4\wr C_2$ $288$ $1$ $C_2$ 12T126, 12T128, 12T129, 16T708, 18T112, 18T113, 24T692, 24T694, 24T695, 24T702, 24T703, 24T704, 32T9306, 36T316, 36T318, 36T456, 36T457, 36T458, 36T459
8T43 $\PGL(2,7)$ $336$ $-1$ 14T16, 16T713, 21T20, 24T707, 28T42, 28T46, 42T81, 42T82, 42T83
8T44 $C_2 \wr S_4$ $384$ $-1$ $S_4$ 8T44 x 3, 16T736 x 2, 16T743 x 2, 16T748 x 2, 16T752 x 2, 24T708 x 4, 24T1151 x 4, 32T9340, 32T9355, 32T9459 x 4
8T45 $(A_4\wr C_2):C_2$ $576$ $1$ $C_2$ 12T161, 12T163, 12T165 x 2, 16T1032, 16T1034, 18T179, 18T180, 18T185 x 2, 24T1490, 24T1492, 24T1493 x 2, 24T1494 x 2, 24T1495 x 2, 24T1503, 24T1504 x 2, 32T34597 x 2, 32T34598, 36T759, 36T760, 36T762, 36T763, 36T774 x 2, 36T775 x 2, 36T960, 36T961, 36T962 x 2, 36T963 x 2
8T46 $A_4^2:C_4$ $576$ $-1$ $C_2$ 12T160, 12T162, 16T1030, 16T1031, 18T182, 18T184, 24T1489, 24T1491, 24T1505, 24T1506 x 2, 24T1508, 32T34594, 36T764, 36T765, 36T766, 36T767, 36T964, 36T965
8T47 $S_4\wr C_2$ $1152$ $-1$ $C_2$ 12T200, 12T201, 12T202, 12T203, 16T1292, 16T1294, 16T1295, 16T1296, 18T272, 18T273, 18T274, 18T275, 24T2803, 24T2804, 24T2805, 24T2806, 24T2807, 24T2808, 24T2809, 24T2810, 24T2821, 24T2826, 32T96692, 32T96694, 32T96695, 32T96696, 36T1758, 36T1759, 36T1760, 36T1761, 36T1762, 36T1763, 36T1764, 36T1765, 36T1766, 36T1767, 36T1768, 36T1769, 36T1943, 36T1944, 36T1945, 36T1946
8T48 $C_2^3:\GL(3,2)$ $1344$ $1$ 8T48, 14T34 x 2, 28T153, 28T159 x 2, 42T210 x 2, 42T211 x 2
8T49 $A_8$ $20160$ $1$ 15T72 x 2, 28T433, 35T36
8T50 $S_8$ $40320$ $-1$ 16T1838, 28T502, 30T1153, 35T44
  displayed columns for results

Results are complete for degrees $\leq 23$.