Group action invariants
| Degree $n$ : | $8$ | |
| Transitive number $t$ : | $34$ | |
| Group : | $V_4^2:S_3$ | |
| CHM label : | $1/2[E(4)^{2}:S_{3}]2=E(4)^{2}:D_{6}$ | |
| Parity: | $1$ | |
| Primitive: | No | |
| Nilpotency class: | $-1$ (not nilpotent) | |
| Generators: | (1,8)(2,3), (1,2,3)(5,6,7), (1,5)(2,7)(3,6)(4,8) | |
| $|\Aut(F/K)|$: | $1$ |
Low degree resolvents
|G/N| Galois groups for stem field(s) 2: $C_2$ 6: $S_3$ 24: $S_4$ x 3 Resolvents shown for degrees $\leq 47$
Subfields
Degree 2: $C_2$
Degree 4: None
Low degree siblings
12T66 x 3, 12T67, 12T68 x 3, 12T69, 16T194, 24T195 x 3, 24T196 x 3, 24T197 x 3, 24T198, 24T199, 24T200 x 3, 32T398Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy Classes
| Cycle Type | Size | Order | Representative |
| $ 1, 1, 1, 1, 1, 1, 1, 1 $ | $1$ | $1$ | $()$ |
| $ 2, 2, 1, 1, 1, 1 $ | $6$ | $2$ | $(4,5)(6,7)$ |
| $ 3, 3, 1, 1 $ | $32$ | $3$ | $(2,3,8)(5,7,6)$ |
| $ 2, 2, 2, 2 $ | $3$ | $2$ | $(1,2)(3,8)(4,5)(6,7)$ |
| $ 2, 2, 2, 2 $ | $3$ | $2$ | $(1,2)(3,8)(4,6)(5,7)$ |
| $ 2, 2, 2, 2 $ | $3$ | $2$ | $(1,2)(3,8)(4,7)(5,6)$ |
| $ 2, 2, 2, 2 $ | $12$ | $2$ | $(1,4)(2,5)(3,6)(7,8)$ |
| $ 4, 4 $ | $12$ | $4$ | $(1,4,2,5)(3,6,8,7)$ |
| $ 4, 4 $ | $12$ | $4$ | $(1,4,3,6)(2,5,8,7)$ |
| $ 4, 4 $ | $12$ | $4$ | $(1,4,8,7)(2,5,3,6)$ |
Group invariants
| Order: | $96=2^{5} \cdot 3$ | |
| Cyclic: | No | |
| Abelian: | No | |
| Solvable: | Yes | |
| GAP id: | [96, 227] |
| Character table: |
2 5 4 . 5 5 5 3 3 3 3
3 1 . 1 . . . . . . .
1a 2a 3a 2b 2c 2d 2e 4a 4b 4c
2P 1a 1a 3a 1a 1a 1a 1a 2b 2d 2c
3P 1a 2a 1a 2b 2c 2d 2e 4a 4b 4c
X.1 1 1 1 1 1 1 1 1 1 1
X.2 1 1 1 1 1 1 -1 -1 -1 -1
X.3 2 2 -1 2 2 2 . . . .
X.4 3 -1 . -1 3 -1 -1 1 1 -1
X.5 3 -1 . -1 3 -1 1 -1 -1 1
X.6 3 -1 . 3 -1 -1 -1 -1 1 1
X.7 3 -1 . 3 -1 -1 1 1 -1 -1
X.8 3 -1 . -1 -1 3 -1 1 -1 1
X.9 3 -1 . -1 -1 3 1 -1 1 -1
X.10 6 2 . -2 -2 -2 . . . .
|