Group action invariants
| Degree $n$ : | $8$ | |
| Transitive number $t$ : | $13$ | |
| Group : | $A_4\times C_2$ | |
| CHM label : | $E(8):3=A(4)[x]2$ | |
| Parity: | $1$ | |
| Primitive: | No | |
| Nilpotency class: | $-1$ (not nilpotent) | |
| Generators: | (1,3)(2,8)(4,6)(5,7), (1,8)(2,3)(4,5)(6,7), (1,2,3)(4,6,5), (1,5)(2,6)(3,7)(4,8) | |
| $|\Aut(F/K)|$: | $2$ |
Low degree resolvents
|G/N| Galois groups for stem field(s) 2: $C_2$ 3: $C_3$ 6: $C_6$ 12: $A_4$ Resolvents shown for degrees $\leq 47$
Subfields
Degree 2: $C_2$
Degree 4: $A_4$
Low degree siblings
6T6, 12T6, 12T7, 24T9Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy Classes
| Cycle Type | Size | Order | Representative |
| $ 1, 1, 1, 1, 1, 1, 1, 1 $ | $1$ | $1$ | $()$ |
| $ 3, 3, 1, 1 $ | $4$ | $3$ | $(2,3,8)(4,7,5)$ |
| $ 3, 3, 1, 1 $ | $4$ | $3$ | $(2,8,3)(4,5,7)$ |
| $ 2, 2, 2, 2 $ | $3$ | $2$ | $(1,2)(3,8)(4,7)(5,6)$ |
| $ 6, 2 $ | $4$ | $6$ | $(1,4,8,6,3,7)(2,5)$ |
| $ 6, 2 $ | $4$ | $6$ | $(1,4,2,6,3,5)(7,8)$ |
| $ 2, 2, 2, 2 $ | $3$ | $2$ | $(1,4)(2,7)(3,6)(5,8)$ |
| $ 2, 2, 2, 2 $ | $1$ | $2$ | $(1,6)(2,5)(3,4)(7,8)$ |
Group invariants
| Order: | $24=2^{3} \cdot 3$ | |
| Cyclic: | No | |
| Abelian: | No | |
| Solvable: | Yes | |
| GAP id: | [24, 13] |
| Character table: |
2 3 1 1 3 1 1 3 3
3 1 1 1 . 1 1 . 1
1a 3a 3b 2a 6a 6b 2b 2c
2P 1a 3b 3a 1a 3a 3b 1a 1a
3P 1a 1a 1a 2a 2c 2c 2b 2c
5P 1a 3b 3a 2a 6b 6a 2b 2c
X.1 1 1 1 1 1 1 1 1
X.2 1 1 1 1 -1 -1 -1 -1
X.3 1 A /A 1 -/A -A -1 -1
X.4 1 /A A 1 -A -/A -1 -1
X.5 1 A /A 1 /A A 1 1
X.6 1 /A A 1 A /A 1 1
X.7 3 . . -1 . . 1 -3
X.8 3 . . -1 . . -1 3
A = E(3)^2
= (-1-Sqrt(-3))/2 = -1-b3
|