Show commands: Magma
Group invariants
Abstract group: | $(((C_4 \times C_2): C_2):C_2):C_2$ |
| |
Order: | $64=2^{6}$ |
| |
Cyclic: | no |
| |
Abelian: | no |
| |
Solvable: | yes |
| |
Nilpotency class: | $3$ |
|
Group action invariants
Degree $n$: | $8$ |
| |
Transitive number $t$: | $29$ |
| |
CHM label: | $E(8):D_{8}=[2^{3}]D(4)$ | ||
Parity: | $1$ |
| |
Primitive: | no |
| |
$\card{\Aut(F/K)}$: | $2$ |
| |
Generators: | $(1,3)(2,8)(4,6)(5,7)$, $(1,8)(2,3)(4,5)(6,7)$, $(1,5)(2,6)(3,7)(4,8)$, $(1,3)(4,5,6,7)$, $(1,3)(5,7)$ |
|
Low degree resolvents
$\card{(G/N)}$ Galois groups for stem field(s) $2$: $C_2$ x 7 $4$: $C_2^2$ x 7 $8$: $D_{4}$ x 6, $C_2^3$ $16$: $D_4\times C_2$ x 3 $32$: $C_2^2 \wr C_2$ Resolvents shown for degrees $\leq 47$
Subfields
Degree 2: $C_2$
Degree 4: $D_{4}$
Low degree siblings
8T29 x 5, 8T31 x 2, 16T127, 16T128 x 3, 16T129 x 3, 16T147, 16T149 x 6, 16T150 x 3, 32T136 x 3, 32T137 x 2, 32T163 x 3Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy classes
Label | Cycle Type | Size | Order | Index | Representative |
1A | $1^{8}$ | $1$ | $1$ | $0$ | $()$ |
2A | $2^{4}$ | $1$ | $2$ | $4$ | $(1,3)(2,8)(4,6)(5,7)$ |
2B | $2^{4}$ | $2$ | $2$ | $4$ | $(1,2)(3,8)(4,7)(5,6)$ |
2C | $2^{2},1^{4}$ | $2$ | $2$ | $2$ | $(4,6)(5,7)$ |
2D | $2^{4}$ | $2$ | $2$ | $4$ | $(1,8)(2,3)(4,7)(5,6)$ |
2E | $2^{2},1^{4}$ | $4$ | $2$ | $2$ | $(4,7)(5,6)$ |
2F | $2^{4}$ | $4$ | $2$ | $4$ | $(1,2)(3,8)(4,6)(5,7)$ |
2G | $2^{4}$ | $4$ | $2$ | $4$ | $(1,5)(2,6)(3,7)(4,8)$ |
2H | $2^{2},1^{4}$ | $4$ | $2$ | $2$ | $(1,3)(5,7)$ |
2I | $2^{4}$ | $4$ | $2$ | $4$ | $(1,7)(2,6)(3,5)(4,8)$ |
4A | $4^{2}$ | $4$ | $4$ | $6$ | $(1,5,3,7)(2,6,8,4)$ |
4B | $4^{2}$ | $4$ | $4$ | $6$ | $(1,2,3,8)(4,5,6,7)$ |
4C | $4^{2}$ | $4$ | $4$ | $6$ | $(1,6,3,4)(2,7,8,5)$ |
4D | $4^{2}$ | $8$ | $4$ | $6$ | $(1,5,2,6)(3,7,8,4)$ |
4E | $4,2,1^{2}$ | $8$ | $4$ | $4$ | $(1,3)(4,5,6,7)$ |
4F | $4^{2}$ | $8$ | $4$ | $6$ | $(1,7,8,4)(2,6,3,5)$ |
Malle's constant $a(G)$: $1/2$
Character table
1A | 2A | 2B | 2C | 2D | 2E | 2F | 2G | 2H | 2I | 4A | 4B | 4C | 4D | 4E | 4F | ||
Size | 1 | 1 | 2 | 2 | 2 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 8 | 8 | 8 | |
2 P | 1A | 1A | 1A | 1A | 1A | 1A | 1A | 1A | 1A | 1A | 2A | 2A | 2A | 2B | 2C | 2D | |
Type | |||||||||||||||||
64.138.1a | R | ||||||||||||||||
64.138.1b | R | ||||||||||||||||
64.138.1c | R | ||||||||||||||||
64.138.1d | R | ||||||||||||||||
64.138.1e | R | ||||||||||||||||
64.138.1f | R | ||||||||||||||||
64.138.1g | R | ||||||||||||||||
64.138.1h | R | ||||||||||||||||
64.138.2a | R | ||||||||||||||||
64.138.2b | R | ||||||||||||||||
64.138.2c | R | ||||||||||||||||
64.138.2d | R | ||||||||||||||||
64.138.2e | R | ||||||||||||||||
64.138.2f | R | ||||||||||||||||
64.138.4a | R | ||||||||||||||||
64.138.4b | R |
Regular extensions
$f_{ 1 } =$ |
$x^{8} - x^{6} + t x^{2} + t^{2}$
|