Group action invariants
| Degree $n$ : | $8$ | |
| Transitive number $t$ : | $29$ | |
| Group : | $(((C_4 \times C_2): C_2):C_2):C_2$ | |
| CHM label : | $E(8):D_{8}=[2^{3}]D(4)$ | |
| Parity: | $1$ | |
| Primitive: | No | |
| Nilpotency class: | $3$ | |
| Generators: | (1,3)(2,8)(4,6)(5,7), (1,8)(2,3)(4,5)(6,7), (1,5)(2,6)(3,7)(4,8), (1,3)(4,5,6,7), (1,3)(5,7) | |
| $|\Aut(F/K)|$: | $2$ |
Low degree resolvents
|G/N| Galois groups for stem field(s) 2: $C_2$ x 7 4: $C_2^2$ x 7 8: $D_{4}$ x 6, $C_2^3$ 16: $D_4\times C_2$ x 3 32: $C_2^2 \wr C_2$ Resolvents shown for degrees $\leq 47$
Subfields
Degree 2: $C_2$
Degree 4: $D_{4}$
Low degree siblings
8T29 x 5, 8T31 x 2, 16T127, 16T128 x 3, 16T129 x 3, 16T147, 16T149 x 6, 16T150 x 3, 32T136 x 3, 32T137 x 2, 32T163 x 3Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy Classes
| Cycle Type | Size | Order | Representative |
| $ 1, 1, 1, 1, 1, 1, 1, 1 $ | $1$ | $1$ | $()$ |
| $ 2, 2, 1, 1, 1, 1 $ | $4$ | $2$ | $(4,5)(6,7)$ |
| $ 2, 2, 1, 1, 1, 1 $ | $2$ | $2$ | $(4,6)(5,7)$ |
| $ 2, 2, 1, 1, 1, 1 $ | $4$ | $2$ | $(2,8)(5,7)$ |
| $ 4, 2, 1, 1 $ | $8$ | $4$ | $(2,8)(4,5,6,7)$ |
| $ 2, 2, 2, 2 $ | $2$ | $2$ | $(1,2)(3,8)(4,5)(6,7)$ |
| $ 2, 2, 2, 2 $ | $4$ | $2$ | $(1,2)(3,8)(4,6)(5,7)$ |
| $ 2, 2, 2, 2 $ | $2$ | $2$ | $(1,2)(3,8)(4,7)(5,6)$ |
| $ 4, 4 $ | $4$ | $4$ | $(1,2,3,8)(4,5,6,7)$ |
| $ 2, 2, 2, 2 $ | $1$ | $2$ | $(1,3)(2,8)(4,6)(5,7)$ |
| $ 2, 2, 2, 2 $ | $4$ | $2$ | $(1,4)(2,5)(3,6)(7,8)$ |
| $ 4, 4 $ | $8$ | $4$ | $(1,4,2,5)(3,6,8,7)$ |
| $ 4, 4 $ | $4$ | $4$ | $(1,4,3,6)(2,5,8,7)$ |
| $ 2, 2, 2, 2 $ | $4$ | $2$ | $(1,4)(2,7)(3,6)(5,8)$ |
| $ 4, 4 $ | $8$ | $4$ | $(1,4,2,7)(3,6,8,5)$ |
| $ 4, 4 $ | $4$ | $4$ | $(1,4,3,6)(2,7,8,5)$ |
Group invariants
| Order: | $64=2^{6}$ | |
| Cyclic: | No | |
| Abelian: | No | |
| Solvable: | Yes | |
| GAP id: | [64, 138] |
| Character table: |
2 6 4 5 4 3 5 4 5 4 6 4 3 4 4 3 4
1a 2a 2b 2c 4a 2d 2e 2f 4b 2g 2h 4c 4d 2i 4e 4f
2P 1a 1a 1a 1a 2b 1a 1a 1a 2g 1a 1a 2d 2g 1a 2f 2g
3P 1a 2a 2b 2c 4a 2d 2e 2f 4b 2g 2h 4c 4d 2i 4e 4f
X.1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
X.2 1 -1 1 -1 1 1 -1 1 -1 1 -1 1 -1 1 -1 1
X.3 1 -1 1 -1 1 1 -1 1 -1 1 1 -1 1 -1 1 -1
X.4 1 -1 1 1 -1 1 -1 1 1 1 -1 1 -1 -1 1 -1
X.5 1 -1 1 1 -1 1 -1 1 1 1 1 -1 1 1 -1 1
X.6 1 1 1 -1 -1 1 1 1 -1 1 -1 -1 -1 1 1 1
X.7 1 1 1 -1 -1 1 1 1 -1 1 1 1 1 -1 -1 -1
X.8 1 1 1 1 1 1 1 1 1 1 -1 -1 -1 -1 -1 -1
X.9 2 . 2 -2 . -2 . -2 2 2 . . . . . .
X.10 2 . 2 2 . -2 . -2 -2 2 . . . . . .
X.11 2 . -2 . . -2 . 2 . 2 . . . -2 . 2
X.12 2 . -2 . . -2 . 2 . 2 . . . 2 . -2
X.13 2 . -2 . . 2 . -2 . 2 -2 . 2 . . .
X.14 2 . -2 . . 2 . -2 . 2 2 . -2 . . .
X.15 4 -2 . . . . 2 . . -4 . . . . . .
X.16 4 2 . . . . -2 . . -4 . . . . . .
|