Group action invariants
| Degree $n$ : | $8$ | |
| Transitive number $t$ : | $42$ | |
| Group : | $A_4\wr C_2$ | |
| CHM label : | $[A(4)^{2}]2$ | |
| Parity: | $1$ | |
| Primitive: | No | |
| Nilpotency class: | $-1$ (not nilpotent) | |
| Generators: | (1,3)(2,8), (1,2,3), (1,5)(2,6)(3,7)(4,8) | |
| $|\Aut(F/K)|$: | $1$ |
Low degree resolvents
|G/N| Galois groups for stem field(s) 2: $C_2$ 3: $C_3$ 6: $S_3$, $C_6$ 18: $S_3\times C_3$ Resolvents shown for degrees $\leq 47$
Subfields
Degree 2: $C_2$
Degree 4: None
Low degree siblings
12T126, 12T128, 12T129, 16T708, 18T112, 18T113, 24T692, 24T694, 24T695, 24T702, 24T703, 24T704, 32T9306, 36T316, 36T318, 36T456, 36T457, 36T458, 36T459Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy Classes
| Cycle Type | Size | Order | Representative |
| $ 1, 1, 1, 1, 1, 1, 1, 1 $ | $1$ | $1$ | $()$ |
| $ 3, 1, 1, 1, 1, 1 $ | $8$ | $3$ | $(5,6,7)$ |
| $ 3, 1, 1, 1, 1, 1 $ | $8$ | $3$ | $(5,7,6)$ |
| $ 2, 2, 1, 1, 1, 1 $ | $6$ | $2$ | $(4,5)(6,7)$ |
| $ 3, 3, 1, 1 $ | $32$ | $3$ | $(2,3,8)(5,6,7)$ |
| $ 3, 3, 1, 1 $ | $16$ | $3$ | $(2,3,8)(5,7,6)$ |
| $ 3, 2, 2, 1 $ | $24$ | $6$ | $(2,3,8)(4,5)(6,7)$ |
| $ 3, 3, 1, 1 $ | $16$ | $3$ | $(2,8,3)(5,6,7)$ |
| $ 3, 2, 2, 1 $ | $24$ | $6$ | $(2,8,3)(4,5)(6,7)$ |
| $ 2, 2, 2, 2 $ | $9$ | $2$ | $(1,2)(3,8)(4,5)(6,7)$ |
| $ 2, 2, 2, 2 $ | $12$ | $2$ | $(1,4)(2,5)(3,7)(6,8)$ |
| $ 6, 2 $ | $48$ | $6$ | $(1,4)(2,5,3,7,8,6)$ |
| $ 6, 2 $ | $48$ | $6$ | $(1,4)(2,5,8,6,3,7)$ |
| $ 4, 4 $ | $36$ | $4$ | $(1,4,2,5)(3,7,8,6)$ |
Group invariants
| Order: | $288=2^{5} \cdot 3^{2}$ | |
| Cyclic: | No | |
| Abelian: | No | |
| Solvable: | Yes | |
| GAP id: | [288, 1025] |
| Character table: |
2 5 2 2 4 . 1 2 1 2 5 3 1 1 3
3 2 2 2 1 2 2 1 2 1 . 1 1 1 .
1a 3a 3b 2a 3c 3d 6a 3e 6b 2b 2c 6c 6d 4a
2P 1a 3b 3a 1a 3c 3e 3a 3d 3b 1a 1a 3d 3e 2b
3P 1a 1a 1a 2a 1a 1a 2a 1a 2a 2b 2c 2c 2c 4a
5P 1a 3b 3a 2a 3c 3e 6b 3d 6a 2b 2c 6d 6c 4a
X.1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
X.2 1 1 1 1 1 1 1 1 1 1 -1 -1 -1 -1
X.3 1 A /A 1 1 A /A /A A 1 -1 -/A -A -1
X.4 1 /A A 1 1 /A A A /A 1 -1 -A -/A -1
X.5 1 A /A 1 1 A /A /A A 1 1 /A A 1
X.6 1 /A A 1 1 /A A A /A 1 1 A /A 1
X.7 2 -1 -1 2 -1 2 -1 2 -1 2 . . . .
X.8 2 -A -/A 2 -1 C -/A /C -A 2 . . . .
X.9 2 -/A -A 2 -1 /C -A C -/A 2 . . . .
X.10 6 3 3 2 . . -1 . -1 -2 . . . .
X.11 6 B /B 2 . . -/A . -A -2 . . . .
X.12 6 /B B 2 . . -A . -/A -2 . . . .
X.13 9 . . -3 . . . . . 1 -3 . . 1
X.14 9 . . -3 . . . . . 1 3 . . -1
A = E(3)^2
= (-1-Sqrt(-3))/2 = -1-b3
B = 3*E(3)^2
= (-3-3*Sqrt(-3))/2 = -3-3b3
C = 2*E(3)^2
= -1-Sqrt(-3) = -1-i3
|