Show commands: Magma
Group invariants
| Abstract group: | $A_4\wr C_2$ |
| |
| Order: | $288=2^{5} \cdot 3^{2}$ |
| |
| Cyclic: | no |
| |
| Abelian: | no |
| |
| Solvable: | yes |
| |
| Nilpotency class: | not nilpotent |
|
Group action invariants
| Degree $n$: | $8$ |
| |
| Transitive number $t$: | $42$ |
| |
| CHM label: | $[A(4)^{2}]2$ | ||
| Parity: | $1$ |
| |
| Primitive: | no |
| |
| $\card{\Aut(F/K)}$: | $1$ |
| |
| Generators: | $(1,3)(2,8)$, $(1,2,3)$, $(1,5)(2,6)(3,7)(4,8)$ |
|
Low degree resolvents
$\card{(G/N)}$ Galois groups for stem field(s) $2$: $C_2$ $3$: $C_3$ $6$: $S_3$, $C_6$ $18$: $S_3\times C_3$ Resolvents shown for degrees $\leq 47$
Subfields
Degree 2: $C_2$
Degree 4: None
Low degree siblings
12T126, 12T128, 12T129, 16T708, 18T112, 18T113, 24T692, 24T694, 24T695, 24T702, 24T703, 24T704, 32T9306, 36T316, 36T318, 36T456, 36T457, 36T458, 36T459Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy classes
| Label | Cycle Type | Size | Order | Index | Representative |
| 1A | $1^{8}$ | $1$ | $1$ | $0$ | $()$ |
| 2A | $2^{2},1^{4}$ | $6$ | $2$ | $2$ | $(1,3)(2,8)$ |
| 2B | $2^{4}$ | $9$ | $2$ | $4$ | $(1,8)(2,3)(4,5)(6,7)$ |
| 2C | $2^{4}$ | $12$ | $2$ | $4$ | $(1,5)(2,6)(3,7)(4,8)$ |
| 3A1 | $3,1^{5}$ | $8$ | $3$ | $2$ | $(4,7,5)$ |
| 3A-1 | $3,1^{5}$ | $8$ | $3$ | $2$ | $(4,5,7)$ |
| 3B1 | $3^{2},1^{2}$ | $16$ | $3$ | $4$ | $(1,8,2)(4,6,5)$ |
| 3B-1 | $3^{2},1^{2}$ | $16$ | $3$ | $4$ | $(1,2,8)(4,5,6)$ |
| 3C | $3^{2},1^{2}$ | $32$ | $3$ | $4$ | $(1,2,3)(4,5,6)$ |
| 4A | $4^{2}$ | $36$ | $4$ | $6$ | $(1,6,8,7)(2,5,3,4)$ |
| 6A1 | $3,2^{2},1$ | $24$ | $6$ | $4$ | $(1,3)(2,8)(4,5,7)$ |
| 6A-1 | $3,2^{2},1$ | $24$ | $6$ | $4$ | $(1,3)(2,8)(4,7,5)$ |
| 6B1 | $6,2$ | $48$ | $6$ | $6$ | $(1,6,8,5,2,4)(3,7)$ |
| 6B-1 | $6,2$ | $48$ | $6$ | $6$ | $(1,4,2,5,8,6)(3,7)$ |
Malle's constant $a(G)$: $1/2$
Character table
| 1A | 2A | 2B | 2C | 3A1 | 3A-1 | 3B1 | 3B-1 | 3C | 4A | 6A1 | 6A-1 | 6B1 | 6B-1 | ||
| Size | 1 | 6 | 9 | 12 | 8 | 8 | 16 | 16 | 32 | 36 | 24 | 24 | 48 | 48 | |
| 2 P | 1A | 1A | 1A | 1A | 3A-1 | 3A1 | 3B-1 | 3B1 | 3C | 2B | 3A1 | 3A-1 | 3B1 | 3B-1 | |
| 3 P | 1A | 2A | 2B | 2C | 1A | 1A | 1A | 1A | 1A | 4A | 2A | 2A | 2C | 2C | |
| Type | |||||||||||||||
| 288.1025.1a | R | ||||||||||||||
| 288.1025.1b | R | ||||||||||||||
| 288.1025.1c1 | C | ||||||||||||||
| 288.1025.1c2 | C | ||||||||||||||
| 288.1025.1d1 | C | ||||||||||||||
| 288.1025.1d2 | C | ||||||||||||||
| 288.1025.2a | R | ||||||||||||||
| 288.1025.2b1 | C | ||||||||||||||
| 288.1025.2b2 | C | ||||||||||||||
| 288.1025.6a | R | ||||||||||||||
| 288.1025.6b1 | C | ||||||||||||||
| 288.1025.6b2 | C | ||||||||||||||
| 288.1025.9a | R | ||||||||||||||
| 288.1025.9b | R |
Regular extensions
| $f_{ 1 } =$ |
$9 x^{8} + 24 x^{7} + 16 x^{6} + 6 t x^{4} + 8 t x^{3} + \left(t^{2} - 12 t + 48\right)$
|