Group action invariants
| Degree $n$ : | $8$ | |
| Transitive number $t$ : | $46$ | |
| Group : | $A_4^2:C_4$ | |
| CHM label : | $1/2[S(4)^{2}]2$ | |
| Parity: | $-1$ | |
| Primitive: | No | |
| Nilpotency class: | $-1$ (not nilpotent) | |
| Generators: | (1,8)(4,5), (1,5)(2,7,3,6)(4,8), (1,3)(2,8), (1,2,3) | |
| $|\Aut(F/K)|$: | $1$ |
Low degree resolvents
|G/N| Galois groups for stem field(s) 2: $C_2$ 4: $C_4$ 36: $C_3^2:C_4$ Resolvents shown for degrees $\leq 47$
Subfields
Degree 2: $C_2$
Degree 4: None
Low degree siblings
12T160, 12T162, 16T1030, 16T1031, 18T182, 18T184, 24T1489, 24T1491, 24T1505, 24T1506 x 2, 24T1508, 32T34594, 36T764, 36T765, 36T766, 36T767, 36T964, 36T965Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy Classes
| Cycle Type | Size | Order | Representative |
| $ 1, 1, 1, 1, 1, 1, 1, 1 $ | $1$ | $1$ | $()$ |
| $ 2, 2, 1, 1, 1, 1 $ | $6$ | $2$ | $(4,5)(6,7)$ |
| $ 2, 2, 2, 2 $ | $9$ | $2$ | $(1,8)(2,3)(4,5)(6,7)$ |
| $ 3, 1, 1, 1, 1, 1 $ | $16$ | $3$ | $(2,3,8)$ |
| $ 3, 2, 2, 1 $ | $48$ | $6$ | $(2,3,8)(4,5)(6,7)$ |
| $ 3, 3, 1, 1 $ | $64$ | $3$ | $(2,3,8)(5,6,7)$ |
| $ 2, 2, 1, 1, 1, 1 $ | $36$ | $2$ | $(3,8)(6,7)$ |
| $ 4, 2, 1, 1 $ | $72$ | $4$ | $(1,8,2,3)(6,7)$ |
| $ 4, 4 $ | $36$ | $4$ | $(1,8,2,3)(4,7,5,6)$ |
| $ 4, 2, 2 $ | $72$ | $4$ | $(1,5)(2,7,3,6)(4,8)$ |
| $ 8 $ | $72$ | $8$ | $(1,5,3,6,8,4,2,7)$ |
| $ 4, 2, 2 $ | $72$ | $4$ | $(1,5)(2,6)(3,7,8,4)$ |
| $ 8 $ | $72$ | $8$ | $(1,4,3,6,2,7,8,5)$ |
Group invariants
| Order: | $576=2^{6} \cdot 3^{2}$ | |
| Cyclic: | No | |
| Abelian: | No | |
| Solvable: | Yes | |
| GAP id: | [576, 8652] |
| Character table: |
2 6 5 6 2 2 . 4 3 4 3 3 3 3
3 2 1 . 2 1 2 . . . . . . .
1a 2a 2b 3a 6a 3b 2c 4a 4b 4c 8a 4d 8b
2P 1a 1a 1a 3a 3a 3b 1a 2a 2b 2c 4b 2c 4b
3P 1a 2a 2b 1a 2a 1a 2c 4a 4b 4d 8b 4c 8a
5P 1a 2a 2b 3a 6a 3b 2c 4a 4b 4c 8a 4d 8b
7P 1a 2a 2b 3a 6a 3b 2c 4a 4b 4d 8b 4c 8a
X.1 1 1 1 1 1 1 1 1 1 1 1 1 1
X.2 1 1 1 1 1 1 1 1 1 -1 -1 -1 -1
X.3 1 1 1 1 1 1 -1 -1 -1 A A -A -A
X.4 1 1 1 1 1 1 -1 -1 -1 -A -A A A
X.5 4 4 4 -2 -2 1 . . . . . . .
X.6 4 4 4 1 1 -2 . . . . . . .
X.7 6 2 -2 3 -1 . -2 . 2 . . . .
X.8 6 2 -2 3 -1 . 2 . -2 . . . .
X.9 9 -3 1 . . . 1 -1 1 -1 1 -1 1
X.10 9 -3 1 . . . 1 -1 1 1 -1 1 -1
X.11 9 -3 1 . . . -1 1 -1 A -A -A A
X.12 9 -3 1 . . . -1 1 -1 -A A A -A
X.13 12 4 -4 -3 1 . . . . . . . .
A = -E(4)
= -Sqrt(-1) = -i
|