Group action invariants
| Degree $n$ : | $8$ | |
| Transitive number $t$ : | $24$ | |
| Group : | $S_4\times C_2$ | |
| CHM label : | $E(8):D_{6}=S(4)[x]2$ | |
| Parity: | $1$ | |
| Primitive: | No | |
| Nilpotency class: | $-1$ (not nilpotent) | |
| Generators: | (1,3)(2,8)(4,6)(5,7), (2,3)(4,5), (1,8)(2,3)(4,5)(6,7), (1,2,3)(4,6,5), (1,5)(2,6)(3,7)(4,8) | |
| $|\Aut(F/K)|$: | $2$ |
Low degree resolvents
|G/N| Galois groups for stem field(s) 2: $C_2$ x 3 4: $C_2^2$ 6: $S_3$ 12: $D_{6}$ 24: $S_4$ Resolvents shown for degrees $\leq 47$
Subfields
Degree 2: $C_2$
Degree 4: $S_4$
Low degree siblings
6T11 x 2, 8T24, 12T21, 12T22, 12T23 x 2, 12T24 x 2, 16T61, 24T46, 24T47, 24T48 x 2Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy Classes
| Cycle Type | Size | Order | Representative |
| $ 1, 1, 1, 1, 1, 1, 1, 1 $ | $1$ | $1$ | $()$ |
| $ 2, 2, 1, 1, 1, 1 $ | $6$ | $2$ | $(3,8)(4,7)$ |
| $ 3, 3, 1, 1 $ | $8$ | $3$ | $(2,3,8)(4,7,5)$ |
| $ 2, 2, 2, 2 $ | $3$ | $2$ | $(1,2)(3,8)(4,7)(5,6)$ |
| $ 4, 4 $ | $6$ | $4$ | $(1,2,3,8)(4,7,6,5)$ |
| $ 2, 2, 2, 2 $ | $6$ | $2$ | $(1,4)(2,5)(3,6)(7,8)$ |
| $ 6, 2 $ | $8$ | $6$ | $(1,4,8,6,3,7)(2,5)$ |
| $ 4, 4 $ | $6$ | $4$ | $(1,4,8,5)(2,6,3,7)$ |
| $ 2, 2, 2, 2 $ | $3$ | $2$ | $(1,4)(2,7)(3,6)(5,8)$ |
| $ 2, 2, 2, 2 $ | $1$ | $2$ | $(1,6)(2,5)(3,4)(7,8)$ |
Group invariants
| Order: | $48=2^{4} \cdot 3$ | |
| Cyclic: | No | |
| Abelian: | No | |
| Solvable: | Yes | |
| GAP id: | [48, 48] |
| Character table: |
2 4 3 1 4 3 3 1 3 4 4
3 1 . 1 . . . 1 . . 1
1a 2a 3a 2b 4a 2c 6a 4b 2d 2e
2P 1a 1a 3a 1a 2b 1a 3a 2b 1a 1a
3P 1a 2a 1a 2b 4a 2c 2e 4b 2d 2e
5P 1a 2a 3a 2b 4a 2c 6a 4b 2d 2e
X.1 1 1 1 1 1 1 1 1 1 1
X.2 1 -1 1 1 -1 -1 1 -1 1 1
X.3 1 -1 1 1 -1 1 -1 1 -1 -1
X.4 1 1 1 1 1 -1 -1 -1 -1 -1
X.5 2 . -1 2 . . -1 . 2 2
X.6 2 . -1 2 . . 1 . -2 -2
X.7 3 -1 . -1 1 -1 . 1 -1 3
X.8 3 -1 . -1 1 1 . -1 1 -3
X.9 3 1 . -1 -1 -1 . 1 1 -3
X.10 3 1 . -1 -1 1 . -1 -1 3
|