Show commands: Magma
Group invariants
Abstract group: | $C_4\times C_2$ |
| |
Order: | $8=2^{3}$ |
| |
Cyclic: | no |
| |
Abelian: | yes |
| |
Solvable: | yes |
| |
Nilpotency class: | $1$ |
|
Group action invariants
Degree $n$: | $8$ |
| |
Transitive number $t$: | $2$ |
| |
CHM label: | $4[x]2$ | ||
Parity: | $1$ |
| |
Primitive: | no |
| |
$\card{\Aut(F/K)}$: | $8$ |
| |
Generators: | $(1,2,3,8)(4,5,6,7)$, $(1,5)(2,6)(3,7)(4,8)$ |
|
Low degree resolvents
$\card{(G/N)}$ Galois groups for stem field(s) $2$: $C_2$ x 3 $4$: $C_4$ x 2, $C_2^2$ Resolvents shown for degrees $\leq 47$
Subfields
Degree 2: $C_2$ x 3
Low degree siblings
There are no siblings with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy classes
Label | Cycle Type | Size | Order | Index | Representative |
1A | $1^{8}$ | $1$ | $1$ | $0$ | $()$ |
2A | $2^{4}$ | $1$ | $2$ | $4$ | $(1,5)(2,6)(3,7)(4,8)$ |
2B | $2^{4}$ | $1$ | $2$ | $4$ | $(1,7)(2,4)(3,5)(6,8)$ |
2C | $2^{4}$ | $1$ | $2$ | $4$ | $(1,3)(2,8)(4,6)(5,7)$ |
4A1 | $4^{2}$ | $1$ | $4$ | $6$ | $(1,2,3,8)(4,5,6,7)$ |
4A-1 | $4^{2}$ | $1$ | $4$ | $6$ | $(1,8,3,2)(4,7,6,5)$ |
4B1 | $4^{2}$ | $1$ | $4$ | $6$ | $(1,6,3,4)(2,7,8,5)$ |
4B-1 | $4^{2}$ | $1$ | $4$ | $6$ | $(1,4,3,6)(2,5,8,7)$ |
Malle's constant $a(G)$: $1/4$
Character table
1A | 2A | 2B | 2C | 4A1 | 4A-1 | 4B1 | 4B-1 | ||
Size | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | |
2 P | 1A | 1A | 1A | 1A | 2C | 2C | 2C | 2C | |
Type | |||||||||
8.2.1a | R | ||||||||
8.2.1b | R | ||||||||
8.2.1c | R | ||||||||
8.2.1d | R | ||||||||
8.2.1e1 | C | ||||||||
8.2.1e2 | C | ||||||||
8.2.1f1 | C | ||||||||
8.2.1f2 | C |
Regular extensions
$f_{ 1 } =$ |
$t^{2} x^{8} + \left(2 t^{3} + 16 t\right) x^{6} + \left(t^{4} + 14 t^{2} + 64\right) x^{4} + \left(2 t^{3} + 48 t\right) x^{2} + t^{2}$
|