Group action invariants
| Degree $n$ : | $8$ | |
| Transitive number $t$ : | $40$ | |
| Group : | $Q_8:S_4$ | |
| CHM label : | $1/2[2^{4}]S(4)$ | |
| Parity: | $-1$ | |
| Primitive: | No | |
| Nilpotency class: | $-1$ (not nilpotent) | |
| Generators: | (1,5)(4,8), (1,8)(2,3)(4,5)(6,7), (1,2,3)(5,6,7), (2,3)(4,8)(6,7) | |
| $|\Aut(F/K)|$: | $2$ |
Low degree resolvents
|G/N| Galois groups for stem field(s) 2: $C_2$ 6: $S_3$ 24: $S_4$ x 3 96: $V_4^2:S_3$ Resolvents shown for degrees $\leq 47$
Subfields
Degree 2: None
Degree 4: $S_4$
Low degree siblings
8T40, 16T444, 16T445, 24T332 x 2, 24T430 x 2, 32T2215 x 2Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy Classes
| Cycle Type | Size | Order | Representative |
| $ 1, 1, 1, 1, 1, 1, 1, 1 $ | $1$ | $1$ | $()$ |
| $ 4, 1, 1, 1, 1 $ | $12$ | $4$ | $(3,4,7,8)$ |
| $ 2, 2, 1, 1, 1, 1 $ | $6$ | $2$ | $(3,7)(4,8)$ |
| $ 2, 2, 2, 1, 1 $ | $24$ | $2$ | $(2,3)(4,8)(6,7)$ |
| $ 3, 3, 1, 1 $ | $32$ | $3$ | $(2,3,4)(6,7,8)$ |
| $ 2, 2, 2, 2 $ | $12$ | $2$ | $(1,2)(3,4)(5,6)(7,8)$ |
| $ 8 $ | $24$ | $8$ | $(1,2,3,4,5,6,7,8)$ |
| $ 6, 2 $ | $32$ | $6$ | $(1,2,3,5,6,7)(4,8)$ |
| $ 8 $ | $24$ | $8$ | $(1,2,3,8,5,6,7,4)$ |
| $ 4, 4 $ | $6$ | $4$ | $(1,2,5,6)(3,4,7,8)$ |
| $ 4, 2, 2 $ | $12$ | $4$ | $(1,2,5,6)(3,7)(4,8)$ |
| $ 4, 4 $ | $6$ | $4$ | $(1,2,5,6)(3,8,7,4)$ |
| $ 2, 2, 2, 2 $ | $1$ | $2$ | $(1,5)(2,6)(3,7)(4,8)$ |
Group invariants
| Order: | $192=2^{6} \cdot 3$ | |
| Cyclic: | No | |
| Abelian: | No | |
| Solvable: | Yes | |
| GAP id: | [192, 1494] |
| Character table: |
2 6 4 5 3 1 4 3 1 3 5 4 5 6
3 1 . . . 1 . . 1 . . . . 1
1a 4a 2a 2b 3a 2c 8a 6a 8b 4b 4c 4d 2d
2P 1a 2a 1a 1a 3a 1a 4d 3a 4b 2d 2a 2d 1a
3P 1a 4a 2a 2b 1a 2c 8a 2d 8b 4b 4c 4d 2d
5P 1a 4a 2a 2b 3a 2c 8a 6a 8b 4b 4c 4d 2d
7P 1a 4a 2a 2b 3a 2c 8a 6a 8b 4b 4c 4d 2d
X.1 1 1 1 1 1 1 1 1 1 1 1 1 1
X.2 1 -1 1 -1 1 1 -1 1 -1 1 -1 1 1
X.3 2 . 2 . -1 2 . -1 . 2 . 2 2
X.4 3 -1 -1 1 . -1 -1 . 1 3 -1 -1 3
X.5 3 -1 3 -1 . -1 1 . 1 -1 -1 -1 3
X.6 3 1 -1 -1 . -1 1 . -1 3 1 -1 3
X.7 3 1 3 1 . -1 -1 . -1 -1 1 -1 3
X.8 3 -1 -1 1 . -1 1 . -1 -1 -1 3 3
X.9 3 1 -1 -1 . -1 -1 . 1 -1 1 3 3
X.10 4 2 . . 1 . . -1 . . -2 . -4
X.11 4 -2 . . 1 . . -1 . . 2 . -4
X.12 6 . -2 . . 2 . . . -2 . -2 6
X.13 8 . . . -1 . . 1 . . . . -8
|