Show commands:
Magma
magma: G := TransitiveGroup(8, 14);
Group action invariants
Degree $n$: | $8$ | magma: t, n := TransitiveGroupIdentification(G); n;
| |
Transitive number $t$: | $14$ | magma: t, n := TransitiveGroupIdentification(G); t;
| |
Group: | $S_4$ | ||
CHM label: | $S(4)[1/2]2=1/2(S_{4}[x]2)$ | ||
Parity: | $1$ | magma: IsEven(G);
| |
Primitive: | no | magma: IsPrimitive(G);
| magma: NilpotencyClass(G);
|
$\card{\Aut(F/K)}$: | $2$ | magma: Order(Centralizer(SymmetricGroup(n), G));
| |
Generators: | (1,3)(2,8)(4,6)(5,7), (1,2,3)(5,6,7), (1,4)(2,6)(3,7)(5,8) | magma: Generators(G);
|
Low degree resolvents
$\card{(G/N)}$ Galois groups for stem field(s) $2$: $C_2$ $6$: $S_3$ Resolvents shown for degrees $\leq 47$
Subfields
Degree 2: $C_2$
Degree 4: $S_4$
Low degree siblings
4T5, 6T7, 6T8, 12T8, 12T9, 24T10Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy classes
Label | Cycle Type | Size | Order | Index | Representative |
1A | $1^{8}$ | $1$ | $1$ | $0$ | $()$ |
2A | $2^{4}$ | $3$ | $2$ | $4$ | $(1,8)(2,3)(4,5)(6,7)$ |
2B | $2^{4}$ | $6$ | $2$ | $4$ | $(1,5)(2,7)(3,6)(4,8)$ |
3A | $3^{2},1^{2}$ | $8$ | $3$ | $4$ | $(1,3,2)(5,7,6)$ |
4A | $4^{2}$ | $6$ | $4$ | $6$ | $(1,4,3,6)(2,5,8,7)$ |
Malle's constant $a(G)$: $1/4$
magma: ConjugacyClasses(G);
Group invariants
Order: | $24=2^{3} \cdot 3$ | magma: Order(G);
| |
Cyclic: | no | magma: IsCyclic(G);
| |
Abelian: | no | magma: IsAbelian(G);
| |
Solvable: | yes | magma: IsSolvable(G);
| |
Nilpotency class: | not nilpotent | ||
Label: | 24.12 | magma: IdentifyGroup(G);
| |
Character table: |
1A | 2A | 2B | 3A | 4A | ||
Size | 1 | 3 | 6 | 8 | 6 | |
2 P | 1A | 1A | 1A | 3A | 2A | |
3 P | 1A | 2A | 2B | 1A | 4A | |
Type | ||||||
24.12.1a | R | |||||
24.12.1b | R | |||||
24.12.2a | R | |||||
24.12.3a | R | |||||
24.12.3b | R |
magma: CharacterTable(G);