Group action invariants
| Degree $n$ : | $8$ | |
| Transitive number $t$ : | $50$ | |
| Group : | $S_8$ | |
| CHM label : | $S8$ | |
| Parity: | $-1$ | |
| Primitive: | Yes | |
| Nilpotency class: | $-1$ (not nilpotent) | |
| Generators: | (1,2,3,4,5,6,7,8), (1,2) | |
| $|\Aut(F/K)|$: | $1$ |
Low degree resolvents
|G/N| Galois groups for stem field(s) 2: $C_2$ Resolvents shown for degrees $\leq 47$
Subfields
Degree 2: None
Degree 4: None
Low degree siblings
16T1838, 28T502, 30T1153, 35T44Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy Classes
| Cycle Type | Size | Order | Representative |
| $ 1, 1, 1, 1, 1, 1, 1, 1 $ | $1$ | $1$ | $()$ |
| $ 2, 2, 1, 1, 1, 1 $ | $210$ | $2$ | $(3,7)(4,5)$ |
| $ 3, 1, 1, 1, 1, 1 $ | $112$ | $3$ | $(1,2,8)$ |
| $ 3, 2, 2, 1 $ | $1680$ | $6$ | $(1,8,2)(3,7)(4,5)$ |
| $ 2, 2, 2, 2 $ | $105$ | $2$ | $(1,2)(3,7)(4,5)(6,8)$ |
| $ 4, 4 $ | $1260$ | $4$ | $(1,8,2,6)(3,5,7,4)$ |
| $ 8 $ | $5040$ | $8$ | $( 1, 4, 6, 7, 2, 5, 8, 3)$ |
| $ 2, 2, 2, 1, 1 $ | $420$ | $2$ | $(1,6)(2,5)(3,4)$ |
| $ 3, 3, 1, 1 $ | $1120$ | $3$ | $(1,5,3)(2,4,6)$ |
| $ 6, 1, 1 $ | $3360$ | $6$ | $(1,4,5,6,3,2)$ |
| $ 4, 1, 1, 1, 1 $ | $420$ | $4$ | $( 1, 5, 6, 2)$ |
| $ 4, 3, 1 $ | $3360$ | $12$ | $(1,8,2)(3,4,7,5)$ |
| $ 5, 1, 1, 1 $ | $1344$ | $5$ | $(1,3,4,6,5)$ |
| $ 5, 3 $ | $2688$ | $15$ | $(1,4,5,3,6)(2,8,7)$ |
| $ 2, 1, 1, 1, 1, 1, 1 $ | $28$ | $2$ | $(2,8)$ |
| $ 5, 2, 1 $ | $4032$ | $10$ | $(1,3,4,6,5)(2,8)$ |
| $ 7, 1 $ | $5760$ | $7$ | $(1,8,2,5,7,4,6)$ |
| $ 4, 2, 1, 1 $ | $2520$ | $4$ | $(1,8)(2,3,6,5)$ |
| $ 3, 2, 1, 1, 1 $ | $1120$ | $6$ | $(1,8,6)(4,5)$ |
| $ 4, 2, 2 $ | $1260$ | $4$ | $(1,4,7,2)(3,5)(6,8)$ |
| $ 6, 2 $ | $3360$ | $6$ | $( 1, 8, 5, 2, 6, 4)( 3, 7)$ |
| $ 3, 3, 2 $ | $1120$ | $6$ | $( 1, 6, 5)( 2, 8, 4)( 3, 7)$ |
Group invariants
| Order: | $40320=2^{7} \cdot 3^{2} \cdot 5 \cdot 7$ | |
| Cyclic: | No | |
| Abelian: | No | |
| Solvable: | No | |
| GAP id: | Data not available |
| Character table: Data not available. |