Properties

Label 8T50
Degree $8$
Order $40320$
Cyclic no
Abelian no
Solvable no
Primitive yes
$p$-group no
Group: $S_8$

Related objects

Downloads

Learn more

Show commands: Magma

magma: G := TransitiveGroup(8, 50);
 

Group action invariants

Degree $n$:  $8$
magma: t, n := TransitiveGroupIdentification(G); n;
 
Transitive number $t$:  $50$
magma: t, n := TransitiveGroupIdentification(G); t;
 
Group:  $S_8$
CHM label:  $S8$
Parity:  $-1$
magma: IsEven(G);
 
Primitive:  yes
magma: IsPrimitive(G);
 
Nilpotency class:  $-1$ (not nilpotent)
magma: NilpotencyClass(G);
 
$\card{\Aut(F/K)}$:  $1$
magma: Order(Centralizer(SymmetricGroup(n), G));
 
Generators:  (1,2,3,4,5,6,7,8), (1,2)
magma: Generators(G);
 

Low degree resolvents

|G/N|Galois groups for stem field(s)
$2$:  $C_2$

Resolvents shown for degrees $\leq 47$

Subfields

Degree 2: None

Degree 4: None

Low degree siblings

16T1838, 28T502, 30T1153, 35T44

Siblings are shown with degree $\leq 47$

A number field with this Galois group has no arithmetically equivalent fields.

Conjugacy classes

Cycle TypeSizeOrderRepresentative
$ 1, 1, 1, 1, 1, 1, 1, 1 $ $1$ $1$ $()$
$ 2, 1, 1, 1, 1, 1, 1 $ $28$ $2$ $(1,7)$
$ 3, 3, 1, 1 $ $1120$ $3$ $(2,8,6)(3,5,4)$
$ 3, 3, 2 $ $1120$ $6$ $(1,7)(2,6,8)(3,4,5)$
$ 3, 1, 1, 1, 1, 1 $ $112$ $3$ $(3,5,4)$
$ 3, 2, 1, 1, 1 $ $1120$ $6$ $(1,7)(3,4,5)$
$ 2, 2, 2, 2 $ $105$ $2$ $(1,7)(2,3)(4,6)(5,8)$
$ 6, 2 $ $3360$ $6$ $(1,7)(2,4,8,3,6,5)$
$ 2, 2, 1, 1, 1, 1 $ $210$ $2$ $(1,7)(4,6)$
$ 4, 2, 1, 1 $ $2520$ $4$ $(1,4,7,6)(2,3)$
$ 2, 2, 2, 1, 1 $ $420$ $2$ $(1,7)(4,8)(5,6)$
$ 6, 1, 1 $ $3360$ $6$ $(2,4,6,5,8,3)$
$ 3, 2, 2, 1 $ $1680$ $6$ $(1,7)(2,6)(3,4,5)$
$ 4, 4 $ $1260$ $4$ $(1,5,2,6)(3,7,4,8)$
$ 4, 2, 2 $ $1260$ $4$ $(1,4,7,8)(2,3)(5,6)$
$ 4, 1, 1, 1, 1 $ $420$ $4$ $(2,5,6,3)$
$ 4, 3, 1 $ $3360$ $12$ $(1,8,4)(2,3,6,5)$
$ 8 $ $5040$ $8$ $(1,8,7,4,3,5,2,6)$
$ 5, 1, 1, 1 $ $1344$ $5$ $(2,5,6,8,7)$
$ 5, 2, 1 $ $4032$ $10$ $(2,8,5,7,6)(3,4)$
$ 5, 3 $ $2688$ $15$ $(1,8,2,7,6)(3,4,5)$
$ 7, 1 $ $5760$ $7$ $(2,7,4,6,3,5,8)$

magma: ConjugacyClasses(G);
 

Group invariants

Order:  $40320=2^{7} \cdot 3^{2} \cdot 5 \cdot 7$
magma: Order(G);
 
Cyclic:  no
magma: IsCyclic(G);
 
Abelian:  no
magma: IsAbelian(G);
 
Solvable:  no
magma: IsSolvable(G);
 
Label:  40320.a
magma: IdentifyGroup(G);
 
Character table: not available.

magma: CharacterTable(G);