Group action invariants
| Degree $n$ : | $8$ | |
| Transitive number $t$ : | $7$ | |
| Group : | $C_8:C_2$ | |
| CHM label : | $1/2[2^{3}]4$ | |
| Parity: | $-1$ | |
| Primitive: | No | |
| Nilpotency class: | $2$ | |
| Generators: | (1,2,3,4,5,6,7,8), (1,5)(3,7) | |
| $|\Aut(F/K)|$: | $4$ |
Low degree resolvents
|G/N| Galois groups for stem field(s) 2: $C_2$ x 3 4: $C_4$ x 2, $C_2^2$ 8: $C_4\times C_2$ Resolvents shown for degrees $\leq 47$
Subfields
Degree 2: $C_2$
Degree 4: $C_4$
Low degree siblings
16T6Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy Classes
| Cycle Type | Size | Order | Representative |
| $ 1, 1, 1, 1, 1, 1, 1, 1 $ | $1$ | $1$ | $()$ |
| $ 2, 2, 1, 1, 1, 1 $ | $2$ | $2$ | $(2,6)(4,8)$ |
| $ 8 $ | $2$ | $8$ | $(1,2,3,4,5,6,7,8)$ |
| $ 8 $ | $2$ | $8$ | $(1,2,7,8,5,6,3,4)$ |
| $ 4, 4 $ | $1$ | $4$ | $(1,3,5,7)(2,4,6,8)$ |
| $ 4, 4 $ | $2$ | $4$ | $(1,3,5,7)(2,8,6,4)$ |
| $ 8 $ | $2$ | $8$ | $(1,4,3,6,5,8,7,2)$ |
| $ 8 $ | $2$ | $8$ | $(1,4,7,2,5,8,3,6)$ |
| $ 2, 2, 2, 2 $ | $1$ | $2$ | $(1,5)(2,6)(3,7)(4,8)$ |
| $ 4, 4 $ | $1$ | $4$ | $(1,7,5,3)(2,8,6,4)$ |
Group invariants
| Order: | $16=2^{4}$ | |
| Cyclic: | No | |
| Abelian: | No | |
| Solvable: | Yes | |
| GAP id: | [16, 6] |
| Character table: |
2 4 3 3 3 4 3 3 3 4 4
1a 2a 8a 8b 4a 4b 8c 8d 2b 4c
2P 1a 1a 4a 4c 2b 2b 4a 4c 1a 2b
3P 1a 2a 8d 8c 4c 4b 8b 8a 2b 4a
5P 1a 2a 8a 8b 4a 4b 8c 8d 2b 4c
7P 1a 2a 8d 8c 4c 4b 8b 8a 2b 4a
X.1 1 1 1 1 1 1 1 1 1 1
X.2 1 -1 -1 1 1 -1 1 -1 1 1
X.3 1 -1 1 -1 1 -1 -1 1 1 1
X.4 1 1 -1 -1 1 1 -1 -1 1 1
X.5 1 -1 A -A -1 1 A -A 1 -1
X.6 1 -1 -A A -1 1 -A A 1 -1
X.7 1 1 A A -1 -1 -A -A 1 -1
X.8 1 1 -A -A -1 -1 A A 1 -1
X.9 2 . . . B . . . -2 -B
X.10 2 . . . -B . . . -2 B
A = -E(4)
= -Sqrt(-1) = -i
B = -2*E(4)
= -2*Sqrt(-1) = -2i
|