Group action invariants
| Degree $n$ : | $8$ | |
| Transitive number $t$ : | $22$ | |
| Group : | $C_2^3 : D_4 $ | |
| CHM label : | $E(8):D_{4}=[2^{3}]2^{2}$ | |
| Parity: | $1$ | |
| Primitive: | No | |
| Nilpotency class: | $2$ | |
| Generators: | (1,3)(2,8)(4,6)(5,7), (2,3)(6,7), (2,3)(4,5), (1,8)(2,3)(4,5)(6,7), (1,5)(2,6)(3,7)(4,8) | |
| $|\Aut(F/K)|$: | $2$ |
Low degree resolvents
|G/N| Galois groups for stem field(s) 2: $C_2$ x 15 4: $C_2^2$ x 35 8: $C_2^3$ x 15 16: $C_2^4$ Resolvents shown for degrees $\leq 47$
Subfields
Degree 2: $C_2$ x 3
Degree 4: $C_2^2$
Low degree siblings
8T22 x 5, 16T23 x 9, 32T9Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy Classes
| Cycle Type | Size | Order | Representative |
| $ 1, 1, 1, 1, 1, 1, 1, 1 $ | $1$ | $1$ | $()$ |
| $ 2, 2, 1, 1, 1, 1 $ | $2$ | $2$ | $(4,5)(6,7)$ |
| $ 2, 2, 1, 1, 1, 1 $ | $2$ | $2$ | $(2,3)(6,7)$ |
| $ 2, 2, 1, 1, 1, 1 $ | $2$ | $2$ | $(2,3)(4,5)$ |
| $ 2, 2, 2, 2 $ | $2$ | $2$ | $(1,2)(3,8)(4,6)(5,7)$ |
| $ 2, 2, 2, 2 $ | $2$ | $2$ | $(1,2)(3,8)(4,7)(5,6)$ |
| $ 4, 4 $ | $2$ | $4$ | $(1,2,8,3)(4,6,5,7)$ |
| $ 4, 4 $ | $2$ | $4$ | $(1,2,8,3)(4,7,5,6)$ |
| $ 2, 2, 2, 2 $ | $2$ | $2$ | $(1,4)(2,6)(3,7)(5,8)$ |
| $ 4, 4 $ | $2$ | $4$ | $(1,4,8,5)(2,6,3,7)$ |
| $ 2, 2, 2, 2 $ | $2$ | $2$ | $(1,4)(2,7)(3,6)(5,8)$ |
| $ 4, 4 $ | $2$ | $4$ | $(1,4,8,5)(2,7,3,6)$ |
| $ 2, 2, 2, 2 $ | $2$ | $2$ | $(1,6)(2,4)(3,5)(7,8)$ |
| $ 4, 4 $ | $2$ | $4$ | $(1,6,8,7)(2,4,3,5)$ |
| $ 4, 4 $ | $2$ | $4$ | $(1,6,8,7)(2,5,3,4)$ |
| $ 2, 2, 2, 2 $ | $2$ | $2$ | $(1,6)(2,5)(3,4)(7,8)$ |
| $ 2, 2, 2, 2 $ | $1$ | $2$ | $(1,8)(2,3)(4,5)(6,7)$ |
Group invariants
| Order: | $32=2^{5}$ | |
| Cyclic: | No | |
| Abelian: | No | |
| Solvable: | Yes | |
| GAP id: | [32, 49] |
| Character table: |
2 5 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 5
1a 2a 2b 2c 2d 2e 4a 4b 2f 4c 2g 4d 2h 4e 4f 2i 2j
2P 1a 1a 1a 1a 1a 1a 2j 2j 1a 2j 1a 2j 1a 2j 2j 1a 1a
3P 1a 2a 2b 2c 2d 2e 4a 4b 2f 4c 2g 4d 2h 4e 4f 2i 2j
X.1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
X.2 1 -1 -1 1 -1 1 1 -1 -1 1 1 -1 1 -1 -1 1 1
X.3 1 -1 -1 1 -1 1 1 -1 1 -1 -1 1 -1 1 1 -1 1
X.4 1 -1 -1 1 1 -1 -1 1 -1 1 1 -1 -1 1 1 -1 1
X.5 1 -1 -1 1 1 -1 -1 1 1 -1 -1 1 1 -1 -1 1 1
X.6 1 -1 1 -1 -1 1 -1 1 -1 1 -1 1 1 -1 1 -1 1
X.7 1 -1 1 -1 -1 1 -1 1 1 -1 1 -1 -1 1 -1 1 1
X.8 1 -1 1 -1 1 -1 1 -1 -1 1 -1 1 -1 1 -1 1 1
X.9 1 -1 1 -1 1 -1 1 -1 1 -1 1 -1 1 -1 1 -1 1
X.10 1 1 -1 -1 -1 -1 1 1 -1 -1 1 1 1 1 -1 -1 1
X.11 1 1 -1 -1 -1 -1 1 1 1 1 -1 -1 -1 -1 1 1 1
X.12 1 1 -1 -1 1 1 -1 -1 -1 -1 1 1 -1 -1 1 1 1
X.13 1 1 -1 -1 1 1 -1 -1 1 1 -1 -1 1 1 -1 -1 1
X.14 1 1 1 1 -1 -1 -1 -1 -1 -1 -1 -1 1 1 1 1 1
X.15 1 1 1 1 -1 -1 -1 -1 1 1 1 1 -1 -1 -1 -1 1
X.16 1 1 1 1 1 1 1 1 -1 -1 -1 -1 -1 -1 -1 -1 1
X.17 4 . . . . . . . . . . . . . . . -4
|