Group action invariants
| Degree $n$ : | $8$ | |
| Transitive number $t$ : | $41$ | |
| Group : | $V_4^2:(S_3\times C_2)$ | |
| CHM label : | $E(8):S_{4}=[E(4)^{2}:S_{3}]2=E(4)^{2}:D_{12}$ | |
| Parity: | $1$ | |
| Primitive: | No | |
| Nilpotency class: | $-1$ (not nilpotent) | |
| Generators: | (1,3)(2,8)(4,6)(5,7), (1,8)(2,3)(4,5)(6,7), (1,2,3)(4,6,5), (1,5)(2,6)(3,7)(4,8), (1,3)(4,5,6,7) | |
| $|\Aut(F/K)|$: | $1$ |
Low degree resolvents
|G/N| Galois groups for stem field(s) 2: $C_2$ x 3 4: $C_2^2$ 6: $S_3$ 12: $D_{6}$ 24: $S_4$ 48: $S_4\times C_2$ Resolvents shown for degrees $\leq 47$
Subfields
Degree 2: $C_2$
Degree 4: None
Low degree siblings
8T41, 12T108 x 2, 12T109 x 2, 12T110 x 2, 12T111 x 2, 16T435 x 2, 16T436, 24T516 x 2, 24T517 x 2, 24T518 x 2, 24T519 x 2, 24T520 x 2, 24T521 x 2, 24T522 x 2, 24T523, 24T524 x 2, 24T525 x 2, 24T526 x 2, 24T527, 24T528, 24T529, 32T2148, 32T2149 x 2Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy Classes
| Cycle Type | Size | Order | Representative |
| $ 1, 1, 1, 1, 1, 1, 1, 1 $ | $1$ | $1$ | $()$ |
| $ 2, 2, 1, 1, 1, 1 $ | $6$ | $2$ | $(4,5)(6,7)$ |
| $ 2, 2, 1, 1, 1, 1 $ | $12$ | $2$ | $(3,8)(5,6)$ |
| $ 4, 2, 1, 1 $ | $24$ | $4$ | $(3,8)(4,5,7,6)$ |
| $ 3, 3, 1, 1 $ | $32$ | $3$ | $(2,3,8)(5,7,6)$ |
| $ 2, 2, 2, 2 $ | $6$ | $2$ | $(1,2)(3,8)(4,5)(6,7)$ |
| $ 2, 2, 2, 2 $ | $3$ | $2$ | $(1,2)(3,8)(4,7)(5,6)$ |
| $ 4, 4 $ | $12$ | $4$ | $(1,2,3,8)(4,5,6,7)$ |
| $ 2, 2, 2, 2 $ | $12$ | $2$ | $(1,4)(2,5)(3,6)(7,8)$ |
| $ 4, 4 $ | $24$ | $4$ | $(1,4,2,5)(3,6,8,7)$ |
| $ 4, 4 $ | $12$ | $4$ | $(1,4,3,6)(2,5,8,7)$ |
| $ 6, 2 $ | $32$ | $6$ | $(1,4)(2,5,3,7,8,6)$ |
| $ 2, 2, 2, 2 $ | $4$ | $2$ | $(1,4)(2,7)(3,6)(5,8)$ |
| $ 4, 4 $ | $12$ | $4$ | $(1,4,2,7)(3,6,8,5)$ |
Group invariants
| Order: | $192=2^{6} \cdot 3$ | |
| Cyclic: | No | |
| Abelian: | No | |
| Solvable: | Yes | |
| GAP id: | [192, 955] |
| Character table: |
2 6 5 4 3 1 5 6 4 4 3 4 1 4 4
3 1 . . . 1 . . . . . . 1 1 .
1a 2a 2b 4a 3a 2c 2d 4b 2e 4c 4d 6a 2f 4e
2P 1a 1a 1a 2a 3a 1a 1a 2d 1a 2c 2d 3a 1a 2d
3P 1a 2a 2b 4a 1a 2c 2d 4b 2e 4c 4d 2f 2f 4e
5P 1a 2a 2b 4a 3a 2c 2d 4b 2e 4c 4d 6a 2f 4e
X.1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
X.2 1 1 -1 -1 1 1 1 -1 -1 -1 -1 1 1 1
X.3 1 1 -1 -1 1 1 1 -1 1 1 1 -1 -1 -1
X.4 1 1 1 1 1 1 1 1 -1 -1 -1 -1 -1 -1
X.5 2 2 . . -1 2 2 . . . . -1 2 2
X.6 2 2 . . -1 2 2 . . . . 1 -2 -2
X.7 3 -1 -1 1 . -1 3 -1 -1 1 -1 . 3 -1
X.8 3 -1 -1 1 . -1 3 -1 1 -1 1 . -3 1
X.9 3 -1 1 -1 . -1 3 1 -1 1 -1 . -3 1
X.10 3 -1 1 -1 . -1 3 1 1 -1 1 . 3 -1
X.11 6 -2 . . . 2 -2 . -2 . 2 . . .
X.12 6 -2 . . . 2 -2 . 2 . -2 . . .
X.13 6 2 -2 . . -2 -2 2 . . . . . .
X.14 6 2 2 . . -2 -2 -2 . . . . . .
|