Show commands: Magma
Group invariants
| Abstract group: | $D_4\times C_2$ |
| |
| Order: | $16=2^{4}$ |
| |
| Cyclic: | no |
| |
| Abelian: | no |
| |
| Solvable: | yes |
| |
| Nilpotency class: | $2$ |
|
Group action invariants
| Degree $n$: | $8$ |
| |
| Transitive number $t$: | $9$ |
| |
| CHM label: | $E(8):2=D(4)[x]2$ | ||
| Parity: | $1$ |
| |
| Primitive: | no |
| |
| $\card{\Aut(F/K)}$: | $4$ |
| |
| Generators: | $(1,3)(2,8)(4,6)(5,7)$, $(4,5)(6,7)$, $(1,8)(2,3)(4,5)(6,7)$, $(1,5)(2,6)(3,7)(4,8)$ |
|
Low degree resolvents
$\card{(G/N)}$ Galois groups for stem field(s) $2$: $C_2$ x 7 $4$: $C_2^2$ x 7 $8$: $D_{4}$ x 2, $C_2^3$ Resolvents shown for degrees $\leq 47$
Subfields
Degree 2: $C_2$ x 3
Low degree siblings
8T9 x 3, 16T9Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy classes
| Label | Cycle Type | Size | Order | Index | Representative |
| 1A | $1^{8}$ | $1$ | $1$ | $0$ | $()$ |
| 2A | $2^{4}$ | $1$ | $2$ | $4$ | $(1,3)(2,8)(4,6)(5,7)$ |
| 2B | $2^{4}$ | $1$ | $2$ | $4$ | $(1,2)(3,8)(4,7)(5,6)$ |
| 2C | $2^{4}$ | $1$ | $2$ | $4$ | $(1,8)(2,3)(4,5)(6,7)$ |
| 2D | $2^{2},1^{4}$ | $2$ | $2$ | $2$ | $(4,5)(6,7)$ |
| 2E | $2^{4}$ | $2$ | $2$ | $4$ | $(1,3)(2,8)(4,7)(5,6)$ |
| 2F | $2^{4}$ | $2$ | $2$ | $4$ | $(1,5)(2,6)(3,7)(4,8)$ |
| 2G | $2^{4}$ | $2$ | $2$ | $4$ | $(1,7)(2,4)(3,5)(6,8)$ |
| 4A | $4^{2}$ | $2$ | $4$ | $6$ | $(1,5,8,4)(2,6,3,7)$ |
| 4B | $4^{2}$ | $2$ | $4$ | $6$ | $(1,7,8,6)(2,4,3,5)$ |
Malle's constant $a(G)$: $1/2$
Character table
| 1A | 2A | 2B | 2C | 2D | 2E | 2F | 2G | 4A | 4B | ||
| Size | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 2 | 2 | |
| 2 P | 1A | 1A | 1A | 1A | 1A | 1A | 1A | 1A | 2C | 2C | |
| Type | |||||||||||
| 16.11.1a | R | ||||||||||
| 16.11.1b | R | ||||||||||
| 16.11.1c | R | ||||||||||
| 16.11.1d | R | ||||||||||
| 16.11.1e | R | ||||||||||
| 16.11.1f | R | ||||||||||
| 16.11.1g | R | ||||||||||
| 16.11.1h | R | ||||||||||
| 16.11.2a | R | ||||||||||
| 16.11.2b | R |
Regular extensions
| $f_{ 1 } =$ |
$t x^{8} + x^{6} + \left(-t - 2\right) x^{4} + x^{2} + t$
|