Group action invariants
| Degree $n$ : | $8$ | |
| Transitive number $t$ : | $47$ | |
| Group : | $S_4\wr C_2$ | |
| CHM label : | $[S(4)^{2}]2$ | |
| Parity: | $-1$ | |
| Primitive: | No | |
| Nilpotency class: | $-1$ (not nilpotent) | |
| Generators: | (1,2,3,8), (2,3), (1,5)(2,6)(3,7)(4,8) | |
| $|\Aut(F/K)|$: | $1$ |
Low degree resolvents
|G/N| Galois groups for stem field(s) 2: $C_2$ x 3 4: $C_2^2$ 8: $D_{4}$ 72: $C_3^2:D_4$ Resolvents shown for degrees $\leq 47$
Subfields
Degree 2: $C_2$
Degree 4: None
Low degree siblings
12T200, 12T201, 12T202, 12T203, 16T1292, 16T1294, 16T1295, 16T1296, 18T272, 18T273, 18T274, 18T275, 24T2803, 24T2804, 24T2805, 24T2806, 24T2807, 24T2808, 24T2809, 24T2810, 24T2821, 24T2826, 32T96692, 32T96694, 32T96695, 32T96696, 36T1758, 36T1759, 36T1760, 36T1761, 36T1762, 36T1763, 36T1764, 36T1765, 36T1766, 36T1767, 36T1768, 36T1769, 36T1943, 36T1944, 36T1945, 36T1946Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy Classes
| Cycle Type | Size | Order | Representative |
| $ 1, 1, 1, 1, 1, 1, 1, 1 $ | $1$ | $1$ | $()$ |
| $ 2, 2, 1, 1, 1, 1 $ | $6$ | $2$ | $(1,3)(2,8)$ |
| $ 2, 2, 2, 2 $ | $9$ | $2$ | $(1,3)(2,8)(4,6)(5,7)$ |
| $ 3, 1, 1, 1, 1, 1 $ | $16$ | $3$ | $(2,3,8)$ |
| $ 3, 2, 2, 1 $ | $48$ | $6$ | $(2,3,8)(4,6)(5,7)$ |
| $ 3, 3, 1, 1 $ | $64$ | $3$ | $(2,3,8)(5,7,6)$ |
| $ 2, 1, 1, 1, 1, 1, 1 $ | $12$ | $2$ | $(3,8)$ |
| $ 4, 1, 1, 1, 1 $ | $12$ | $4$ | $(1,3,2,8)$ |
| $ 2, 2, 2, 1, 1 $ | $36$ | $2$ | $(3,8)(4,6)(5,7)$ |
| $ 4, 2, 2 $ | $36$ | $4$ | $(1,3,2,8)(4,6)(5,7)$ |
| $ 3, 2, 1, 1, 1 $ | $96$ | $6$ | $(3,8)(5,7,6)$ |
| $ 4, 3, 1 $ | $96$ | $12$ | $(1,3,2,8)(5,7,6)$ |
| $ 2, 2, 1, 1, 1, 1 $ | $36$ | $2$ | $(3,8)(6,7)$ |
| $ 4, 2, 1, 1 $ | $72$ | $4$ | $(1,3,2,8)(6,7)$ |
| $ 4, 4 $ | $36$ | $4$ | $(1,3,2,8)(4,6,5,7)$ |
| $ 2, 2, 2, 2 $ | $24$ | $2$ | $(1,5)(2,6)(3,7)(4,8)$ |
| $ 4, 4 $ | $72$ | $4$ | $(1,5,3,7)(2,6,8,4)$ |
| $ 6, 2 $ | $192$ | $6$ | $(1,5)(2,6,3,7,8,4)$ |
| $ 4, 2, 2 $ | $144$ | $4$ | $(1,5)(2,6)(3,7,8,4)$ |
| $ 8 $ | $144$ | $8$ | $(1,5,3,7,2,6,8,4)$ |
Group invariants
| Order: | $1152=2^{7} \cdot 3^{2}$ | |
| Cyclic: | No | |
| Abelian: | No | |
| Solvable: | Yes | |
| GAP id: | Data not available |
| Character table: |
2 7 6 7 3 3 1 5 5 5 5 2 2 5 4 5 4 4 1 3 3
3 2 1 . 2 1 2 1 1 . . 1 1 . . . 1 . 1 . .
1a 2a 2b 3a 6a 3b 2c 4a 2d 4b 6b 12a 2e 4c 4d 2f 4e 6c 4f 8a
2P 1a 1a 1a 3a 3a 3b 1a 2a 1a 2a 3a 6a 1a 2a 2b 1a 2b 3b 2e 4d
3P 1a 2a 2b 1a 2a 1a 2c 4a 2d 4b 2c 4a 2e 4c 4d 2f 4e 2f 4f 8a
5P 1a 2a 2b 3a 6a 3b 2c 4a 2d 4b 6b 12a 2e 4c 4d 2f 4e 6c 4f 8a
7P 1a 2a 2b 3a 6a 3b 2c 4a 2d 4b 6b 12a 2e 4c 4d 2f 4e 6c 4f 8a
11P 1a 2a 2b 3a 6a 3b 2c 4a 2d 4b 6b 12a 2e 4c 4d 2f 4e 6c 4f 8a
X.1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
X.2 1 1 1 1 1 1 -1 -1 -1 -1 -1 -1 1 1 1 -1 -1 -1 1 1
X.3 1 1 1 1 1 1 -1 -1 -1 -1 -1 -1 1 1 1 1 1 1 -1 -1
X.4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 -1 -1 -1 -1 -1
X.5 2 2 2 2 2 2 . . . . . . -2 -2 -2 . . . . .
X.6 4 4 4 1 1 -2 2 2 2 2 -1 -1 . . . . . . . .
X.7 4 4 4 1 1 -2 -2 -2 -2 -2 1 1 . . . . . . . .
X.8 4 4 4 -2 -2 1 . . . . . . . . . -2 -2 1 . .
X.9 4 4 4 -2 -2 1 . . . . . . . . . 2 2 -1 . .
X.10 6 2 -2 3 -1 . -4 -2 . 2 -1 1 2 . -2 . . . . .
X.11 6 2 -2 3 -1 . -2 -4 2 . 1 -1 -2 . 2 . . . . .
X.12 6 2 -2 3 -1 . 4 2 . -2 1 -1 2 . -2 . . . . .
X.13 6 2 -2 3 -1 . 2 4 -2 . -1 1 -2 . 2 . . . . .
X.14 9 -3 1 . . . -3 3 1 -1 . . 1 -1 1 -3 1 . 1 -1
X.15 9 -3 1 . . . -3 3 1 -1 . . 1 -1 1 3 -1 . -1 1
X.16 9 -3 1 . . . 3 -3 -1 1 . . 1 -1 1 -3 1 . -1 1
X.17 9 -3 1 . . . 3 -3 -1 1 . . 1 -1 1 3 -1 . 1 -1
X.18 12 4 -4 -3 1 . -2 2 -2 2 1 -1 . . . . . . . .
X.19 12 4 -4 -3 1 . 2 -2 2 -2 -1 1 . . . . . . . .
X.20 18 -6 2 . . . . . . . . . -2 2 -2 . . . . .
|