Show commands:
Magma
magma: G := TransitiveGroup(8, 17);
Group action invariants
Degree $n$: | $8$ | magma: t, n := TransitiveGroupIdentification(G); n;
| |
Transitive number $t$: | $17$ | magma: t, n := TransitiveGroupIdentification(G); t;
| |
Group: | $C_4\wr C_2$ | ||
CHM label: | $[4^{2}]2$ | ||
Parity: | $-1$ | magma: IsEven(G);
| |
Primitive: | no | magma: IsPrimitive(G);
| |
Nilpotency class: | $3$ | magma: NilpotencyClass(G);
| |
$\card{\Aut(F/K)}$: | $4$ | magma: Order(Centralizer(SymmetricGroup(n), G));
| |
Generators: | (1,2,3,8), (1,5)(2,6)(3,7)(4,8) | magma: Generators(G);
|
Low degree resolvents
|G/N| Galois groups for stem field(s) $2$: $C_2$ x 3 $4$: $C_4$ x 2, $C_2^2$ $8$: $D_{4}$ x 2, $C_4\times C_2$ $16$: $C_2^2:C_4$ Resolvents shown for degrees $\leq 47$
Subfields
Degree 2: $C_2$
Degree 4: $D_{4}$
Low degree siblings
8T17, 16T28, 16T42, 32T14Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy classes
Cycle Type | Size | Order | Representative |
$ 1, 1, 1, 1, 1, 1, 1, 1 $ | $1$ | $1$ | $()$ |
$ 4, 1, 1, 1, 1 $ | $2$ | $4$ | $(4,5,6,7)$ |
$ 2, 2, 1, 1, 1, 1 $ | $2$ | $2$ | $(4,6)(5,7)$ |
$ 4, 1, 1, 1, 1 $ | $2$ | $4$ | $(4,7,6,5)$ |
$ 4, 4 $ | $1$ | $4$ | $(1,2,3,8)(4,5,6,7)$ |
$ 4, 2, 2 $ | $2$ | $4$ | $(1,2,3,8)(4,6)(5,7)$ |
$ 4, 4 $ | $2$ | $4$ | $(1,2,3,8)(4,7,6,5)$ |
$ 2, 2, 2, 2 $ | $1$ | $2$ | $(1,3)(2,8)(4,6)(5,7)$ |
$ 4, 2, 2 $ | $2$ | $4$ | $(1,3)(2,8)(4,7,6,5)$ |
$ 2, 2, 2, 2 $ | $4$ | $2$ | $(1,4)(2,5)(3,6)(7,8)$ |
$ 8 $ | $4$ | $8$ | $(1,4,2,5,3,6,8,7)$ |
$ 4, 4 $ | $4$ | $4$ | $(1,4,3,6)(2,5,8,7)$ |
$ 8 $ | $4$ | $8$ | $(1,4,8,7,3,6,2,5)$ |
$ 4, 4 $ | $1$ | $4$ | $(1,8,3,2)(4,7,6,5)$ |
magma: ConjugacyClasses(G);
Group invariants
Order: | $32=2^{5}$ | magma: Order(G);
| |
Cyclic: | no | magma: IsCyclic(G);
| |
Abelian: | no | magma: IsAbelian(G);
| |
Solvable: | yes | magma: IsSolvable(G);
| |
Label: | 32.11 | magma: IdentifyGroup(G);
|
Character table: |
2 5 4 4 4 5 4 4 5 4 3 3 3 3 5 1a 4a 2a 4b 4c 4d 4e 2b 4f 2c 8a 4g 8b 4h 2P 1a 2a 1a 2a 2b 2a 2b 1a 2a 1a 4c 2b 4h 2b 3P 1a 4b 2a 4a 4h 4f 4e 2b 4d 2c 8b 4g 8a 4c 5P 1a 4a 2a 4b 4c 4d 4e 2b 4f 2c 8a 4g 8b 4h 7P 1a 4b 2a 4a 4h 4f 4e 2b 4d 2c 8b 4g 8a 4c X.1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 X.2 1 -1 1 -1 1 -1 1 1 -1 -1 1 -1 1 1 X.3 1 -1 1 -1 1 -1 1 1 -1 1 -1 1 -1 1 X.4 1 1 1 1 1 1 1 1 1 -1 -1 -1 -1 1 X.5 1 A -1 -A -1 -A 1 1 A -1 -A 1 A -1 X.6 1 -A -1 A -1 A 1 1 -A -1 A 1 -A -1 X.7 1 A -1 -A -1 -A 1 1 A 1 A -1 -A -1 X.8 1 -A -1 A -1 A 1 1 -A 1 -A -1 A -1 X.9 2 . -2 . 2 . -2 2 . . . . . 2 X.10 2 . 2 . -2 . -2 2 . . . . . -2 X.11 2 B . /B C -/B . -2 -B . . . . -C X.12 2 /B . B -C -B . -2 -/B . . . . C X.13 2 -/B . -B -C B . -2 /B . . . . C X.14 2 -B . -/B C /B . -2 B . . . . -C A = -E(4) = -Sqrt(-1) = -i B = -1+E(4) = -1+Sqrt(-1) = -1+i C = -2*E(4) = -2*Sqrt(-1) = -2i |
magma: CharacterTable(G);