Show commands: Magma
Group invariants
| Abstract group: | $C_4\wr C_2$ |
| |
| Order: | $32=2^{5}$ |
| |
| Cyclic: | no |
| |
| Abelian: | no |
| |
| Solvable: | yes |
| |
| Nilpotency class: | $3$ |
|
Group action invariants
| Degree $n$: | $8$ |
| |
| Transitive number $t$: | $17$ |
| |
| CHM label: | $[4^{2}]2$ | ||
| Parity: | $-1$ |
| |
| Primitive: | no |
| |
| $\card{\Aut(F/K)}$: | $4$ |
| |
| Generators: | $(1,2,3,8)$, $(1,5)(2,6)(3,7)(4,8)$ |
|
Low degree resolvents
$\card{(G/N)}$ Galois groups for stem field(s) $2$: $C_2$ x 3 $4$: $C_4$ x 2, $C_2^2$ $8$: $D_{4}$ x 2, $C_4\times C_2$ $16$: $C_2^2:C_4$ Resolvents shown for degrees $\leq 47$
Subfields
Degree 2: $C_2$
Degree 4: $D_{4}$
Low degree siblings
8T17, 16T28, 16T42, 32T14Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy classes
| Label | Cycle Type | Size | Order | Index | Representative |
| 1A | $1^{8}$ | $1$ | $1$ | $0$ | $()$ |
| 2A | $2^{4}$ | $1$ | $2$ | $4$ | $(1,3)(2,8)(4,6)(5,7)$ |
| 2B | $2^{2},1^{4}$ | $2$ | $2$ | $2$ | $(1,3)(2,8)$ |
| 2C | $2^{4}$ | $4$ | $2$ | $4$ | $(1,7)(2,4)(3,5)(6,8)$ |
| 4A1 | $4^{2}$ | $1$ | $4$ | $6$ | $(1,2,3,8)(4,5,6,7)$ |
| 4A-1 | $4^{2}$ | $1$ | $4$ | $6$ | $(1,8,3,2)(4,7,6,5)$ |
| 4B | $4^{2}$ | $2$ | $4$ | $6$ | $(1,8,3,2)(4,5,6,7)$ |
| 4C1 | $4,1^{4}$ | $2$ | $4$ | $3$ | $(1,2,3,8)$ |
| 4C-1 | $4,1^{4}$ | $2$ | $4$ | $3$ | $(1,8,3,2)$ |
| 4D1 | $4,2^{2}$ | $2$ | $4$ | $5$ | $(1,3)(2,8)(4,5,6,7)$ |
| 4D-1 | $4,2^{2}$ | $2$ | $4$ | $5$ | $(1,3)(2,8)(4,7,6,5)$ |
| 4E | $4^{2}$ | $4$ | $4$ | $6$ | $(1,5,3,7)(2,6,8,4)$ |
| 8A1 | $8$ | $4$ | $8$ | $7$ | $(1,4,2,5,3,6,8,7)$ |
| 8A-1 | $8$ | $4$ | $8$ | $7$ | $(1,6,8,5,3,4,2,7)$ |
Malle's constant $a(G)$: $1/2$
Character table
| 1A | 2A | 2B | 2C | 4A1 | 4A-1 | 4B | 4C1 | 4C-1 | 4D1 | 4D-1 | 4E | 8A1 | 8A-1 | ||
| Size | 1 | 1 | 2 | 4 | 1 | 1 | 2 | 2 | 2 | 2 | 2 | 4 | 4 | 4 | |
| 2 P | 1A | 1A | 1A | 1A | 2A | 2A | 2A | 2B | 2B | 2B | 2B | 2A | 4A1 | 4A-1 | |
| Type | |||||||||||||||
| 32.11.1a | R | ||||||||||||||
| 32.11.1b | R | ||||||||||||||
| 32.11.1c | R | ||||||||||||||
| 32.11.1d | R | ||||||||||||||
| 32.11.1e1 | C | ||||||||||||||
| 32.11.1e2 | C | ||||||||||||||
| 32.11.1f1 | C | ||||||||||||||
| 32.11.1f2 | C | ||||||||||||||
| 32.11.2a | R | ||||||||||||||
| 32.11.2b | R | ||||||||||||||
| 32.11.2c1 | C | ||||||||||||||
| 32.11.2c2 | C | ||||||||||||||
| 32.11.2d1 | C | ||||||||||||||
| 32.11.2d2 | C |
Regular extensions
| $f_{ 1 } =$ |
$t x^{8} + x^{7} - 7 x^{5} + 14 t x^{4} + 7 x^{3} - x + t$
|