Group action invariants
| Degree $n$ : | $8$ | |
| Transitive number $t$ : | $17$ | |
| Group : | $C_4\wr C_2$ | |
| CHM label : | $[4^{2}]2$ | |
| Parity: | $-1$ | |
| Primitive: | No | |
| Nilpotency class: | $3$ | |
| Generators: | (1,2,3,8), (1,5)(2,6)(3,7)(4,8) | |
| $|\Aut(F/K)|$: | $4$ |
Low degree resolvents
|G/N| Galois groups for stem field(s) 2: $C_2$ x 3 4: $C_4$ x 2, $C_2^2$ 8: $D_{4}$ x 2, $C_4\times C_2$ 16: $C_2^2:C_4$ Resolvents shown for degrees $\leq 47$
Subfields
Degree 2: $C_2$
Degree 4: $D_{4}$
Low degree siblings
8T17, 16T28, 16T42, 32T14Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy Classes
| Cycle Type | Size | Order | Representative |
| $ 1, 1, 1, 1, 1, 1, 1, 1 $ | $1$ | $1$ | $()$ |
| $ 4, 1, 1, 1, 1 $ | $2$ | $4$ | $(4,5,6,7)$ |
| $ 2, 2, 1, 1, 1, 1 $ | $2$ | $2$ | $(4,6)(5,7)$ |
| $ 4, 1, 1, 1, 1 $ | $2$ | $4$ | $(4,7,6,5)$ |
| $ 4, 4 $ | $1$ | $4$ | $(1,2,3,8)(4,5,6,7)$ |
| $ 4, 2, 2 $ | $2$ | $4$ | $(1,2,3,8)(4,6)(5,7)$ |
| $ 4, 4 $ | $2$ | $4$ | $(1,2,3,8)(4,7,6,5)$ |
| $ 2, 2, 2, 2 $ | $1$ | $2$ | $(1,3)(2,8)(4,6)(5,7)$ |
| $ 4, 2, 2 $ | $2$ | $4$ | $(1,3)(2,8)(4,7,6,5)$ |
| $ 2, 2, 2, 2 $ | $4$ | $2$ | $(1,4)(2,5)(3,6)(7,8)$ |
| $ 8 $ | $4$ | $8$ | $(1,4,2,5,3,6,8,7)$ |
| $ 4, 4 $ | $4$ | $4$ | $(1,4,3,6)(2,5,8,7)$ |
| $ 8 $ | $4$ | $8$ | $(1,4,8,7,3,6,2,5)$ |
| $ 4, 4 $ | $1$ | $4$ | $(1,8,3,2)(4,7,6,5)$ |
Group invariants
| Order: | $32=2^{5}$ | |
| Cyclic: | No | |
| Abelian: | No | |
| Solvable: | Yes | |
| GAP id: | [32, 11] |
| Character table: |
2 5 4 4 4 5 4 4 5 4 3 3 3 3 5
1a 4a 2a 4b 4c 4d 4e 2b 4f 2c 8a 4g 8b 4h
2P 1a 2a 1a 2a 2b 2a 2b 1a 2a 1a 4c 2b 4h 2b
3P 1a 4b 2a 4a 4h 4f 4e 2b 4d 2c 8b 4g 8a 4c
5P 1a 4a 2a 4b 4c 4d 4e 2b 4f 2c 8a 4g 8b 4h
7P 1a 4b 2a 4a 4h 4f 4e 2b 4d 2c 8b 4g 8a 4c
X.1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
X.2 1 -1 1 -1 1 -1 1 1 -1 -1 1 -1 1 1
X.3 1 -1 1 -1 1 -1 1 1 -1 1 -1 1 -1 1
X.4 1 1 1 1 1 1 1 1 1 -1 -1 -1 -1 1
X.5 1 A -1 -A -1 -A 1 1 A -1 -A 1 A -1
X.6 1 -A -1 A -1 A 1 1 -A -1 A 1 -A -1
X.7 1 A -1 -A -1 -A 1 1 A 1 A -1 -A -1
X.8 1 -A -1 A -1 A 1 1 -A 1 -A -1 A -1
X.9 2 . 2 . -2 . -2 2 . . . . . -2
X.10 2 . -2 . 2 . -2 2 . . . . . 2
X.11 2 B . /B C -/B . -2 -B . . . . -C
X.12 2 /B . B -C -B . -2 -/B . . . . C
X.13 2 -/B . -B -C B . -2 /B . . . . C
X.14 2 -B . -/B C /B . -2 B . . . . -C
A = -E(4)
= -Sqrt(-1) = -i
B = -1-E(4)
= -1-Sqrt(-1) = -1-i
C = 2*E(4)
= 2*Sqrt(-1) = 2i
|