Show commands: Magma
Group invariants
| Abstract group: | $Z_8 : Z_8^\times$ |
| |
| Order: | $32=2^{5}$ |
| |
| Cyclic: | no |
| |
| Abelian: | no |
| |
| Solvable: | yes |
| |
| Nilpotency class: | $3$ |
|
Group action invariants
| Degree $n$: | $8$ |
| |
| Transitive number $t$: | $15$ |
| |
| CHM label: | $[1/4.cD(4)^{2}]2$ | ||
| Parity: | $-1$ |
| |
| Primitive: | no |
| |
| $\card{\Aut(F/K)}$: | $2$ |
| |
| Generators: | $(1,2,3,4,5,6,7,8)$, $(1,5)(3,7)$, $(1,6)(2,5)(3,4)(7,8)$ |
|
Low degree resolvents
$\card{(G/N)}$ Galois groups for stem field(s) $2$: $C_2$ x 7 $4$: $C_2^2$ x 7 $8$: $D_{4}$ x 2, $C_2^3$ $16$: $D_4\times C_2$ Resolvents shown for degrees $\leq 47$
Subfields
Degree 2: $C_2$
Degree 4: $D_{4}$
Low degree siblings
8T15, 16T35, 16T38 x 2, 16T45, 32T21Siblings are shown with degree $\leq 47$
A number field with this Galois group has exactly one arithmetically equivalent field.
Conjugacy classes
| Label | Cycle Type | Size | Order | Index | Representative |
| 1A | $1^{8}$ | $1$ | $1$ | $0$ | $()$ |
| 2A | $2^{4}$ | $1$ | $2$ | $4$ | $(1,5)(2,6)(3,7)(4,8)$ |
| 2B | $2^{2},1^{4}$ | $2$ | $2$ | $2$ | $(2,6)(4,8)$ |
| 2C | $2^{3},1^{2}$ | $4$ | $2$ | $3$ | $(1,7)(2,6)(3,5)$ |
| 2D | $2^{4}$ | $4$ | $2$ | $4$ | $(1,4)(2,3)(5,8)(6,7)$ |
| 2E | $2^{3},1^{2}$ | $4$ | $2$ | $3$ | $(1,7)(3,5)(4,8)$ |
| 4A | $4^{2}$ | $2$ | $4$ | $6$ | $(1,3,5,7)(2,8,6,4)$ |
| 4B | $4^{2}$ | $2$ | $4$ | $6$ | $(1,3,5,7)(2,4,6,8)$ |
| 4C | $4^{2}$ | $4$ | $4$ | $6$ | $(1,4,5,8)(2,7,6,3)$ |
| 8A | $8$ | $4$ | $8$ | $7$ | $(1,6,3,8,5,2,7,4)$ |
| 8B | $8$ | $4$ | $8$ | $7$ | $(1,6,7,4,5,2,3,8)$ |
Malle's constant $a(G)$: $1/2$
Character table
| 1A | 2A | 2B | 2C | 2D | 2E | 4A | 4B | 4C | 8A | 8B | ||
| Size | 1 | 1 | 2 | 4 | 4 | 4 | 2 | 2 | 4 | 4 | 4 | |
| 2 P | 1A | 1A | 1A | 1A | 1A | 1A | 2A | 2A | 2A | 4B | 4B | |
| Type | ||||||||||||
| 32.43.1a | R | |||||||||||
| 32.43.1b | R | |||||||||||
| 32.43.1c | R | |||||||||||
| 32.43.1d | R | |||||||||||
| 32.43.1e | R | |||||||||||
| 32.43.1f | R | |||||||||||
| 32.43.1g | R | |||||||||||
| 32.43.1h | R | |||||||||||
| 32.43.2a | R | |||||||||||
| 32.43.2b | R | |||||||||||
| 32.43.4a | R |
Regular extensions
| $f_{ 1 } =$ |
$x^{8} + 3 t x^{6} + 3 t^{2} x^{4} + t x^{2} + \left(-t^{2} + 1\right)$
|