Group action invariants
| Degree $n$ : | $8$ | |
| Transitive number $t$ : | $15$ | |
| Group : | $Z_8 : Z_8^\times$ | |
| CHM label : | $[1/4.cD(4)^{2}]2$ | |
| Parity: | $-1$ | |
| Primitive: | No | |
| Nilpotency class: | $3$ | |
| Generators: | (1,2,3,4,5,6,7,8), (1,5)(3,7), (1,6)(2,5)(3,4)(7,8) | |
| $|\Aut(F/K)|$: | $2$ |
Low degree resolvents
|G/N| Galois groups for stem field(s) 2: $C_2$ x 7 4: $C_2^2$ x 7 8: $D_{4}$ x 2, $C_2^3$ 16: $D_4\times C_2$ Resolvents shown for degrees $\leq 47$
Subfields
Degree 2: $C_2$
Degree 4: $D_{4}$
Low degree siblings
8T15, 16T35, 16T38 x 2, 16T45, 32T21Siblings are shown with degree $\leq 47$
A number field with this Galois group has exactly one arithmetically equivalent field.
Conjugacy Classes
| Cycle Type | Size | Order | Representative |
| $ 1, 1, 1, 1, 1, 1, 1, 1 $ | $1$ | $1$ | $()$ |
| $ 2, 2, 2, 1, 1 $ | $4$ | $2$ | $(2,4)(3,7)(6,8)$ |
| $ 2, 2, 1, 1, 1, 1 $ | $2$ | $2$ | $(2,6)(4,8)$ |
| $ 2, 2, 2, 1, 1 $ | $4$ | $2$ | $(2,8)(3,7)(4,6)$ |
| $ 2, 2, 2, 2 $ | $4$ | $2$ | $(1,2)(3,8)(4,7)(5,6)$ |
| $ 8 $ | $4$ | $8$ | $(1,2,3,4,5,6,7,8)$ |
| $ 4, 4 $ | $4$ | $4$ | $(1,2,5,6)(3,8,7,4)$ |
| $ 8 $ | $4$ | $8$ | $(1,2,7,8,5,6,3,4)$ |
| $ 4, 4 $ | $2$ | $4$ | $(1,3,5,7)(2,4,6,8)$ |
| $ 4, 4 $ | $2$ | $4$ | $(1,3,5,7)(2,8,6,4)$ |
| $ 2, 2, 2, 2 $ | $1$ | $2$ | $(1,5)(2,6)(3,7)(4,8)$ |
Group invariants
| Order: | $32=2^{5}$ | |
| Cyclic: | No | |
| Abelian: | No | |
| Solvable: | Yes | |
| GAP id: | [32, 43] |
| Character table: |
2 5 3 4 3 3 3 3 3 4 4 5
1a 2a 2b 2c 2d 8a 4a 8b 4b 4c 2e
2P 1a 1a 1a 1a 1a 4b 2e 4b 2e 2e 1a
3P 1a 2a 2b 2c 2d 8a 4a 8b 4b 4c 2e
5P 1a 2a 2b 2c 2d 8a 4a 8b 4b 4c 2e
7P 1a 2a 2b 2c 2d 8a 4a 8b 4b 4c 2e
X.1 1 1 1 1 1 1 1 1 1 1 1
X.2 1 -1 -1 1 -1 -1 1 1 1 -1 1
X.3 1 -1 -1 1 1 1 -1 -1 1 -1 1
X.4 1 -1 1 -1 -1 1 -1 1 1 1 1
X.5 1 -1 1 -1 1 -1 1 -1 1 1 1
X.6 1 1 -1 -1 -1 1 1 -1 1 -1 1
X.7 1 1 -1 -1 1 -1 -1 1 1 -1 1
X.8 1 1 1 1 -1 -1 -1 -1 1 1 1
X.9 2 . 2 . . . . . -2 -2 2
X.10 2 . -2 . . . . . -2 2 2
X.11 4 . . . . . . . . . -4
|