Learn more about

Currently the database contains all groups $G$ acting as automorphisms of curves $X/\C$ of genus 2 to 15 such that $X/G$ has genus 0, as well as genus 2 through 4 with quotient genus greater than 0. There are 31,789 distinct refined passports in the database. The number of distinct generating vectors is 335,012. Here are some further statistics.

Browse

By genus: 2  3  4  5  6  7  8  9  10  11  12  13  14  15 
By group: $C_2$  $C_3$  $C_4$  $C_2^2$  $C_5$  $S_3$  $C_6$  $C_7$  $C_8$  $C_2\times C_4$  $D_4$  $Q_8$  $C_2^3$  $C_9$  $C_3^2$  $D_5$  $C_{10}$  $C_{11}$  $C_3:C_4$  $C_{12}$  $A_4$  $D_6$  $C_2\times C_6$  $\cdots$
Hyperelliptic curves by genus: 2  3  4  5  6  7  8  9  10  11  12  13  14  15 
Cyclic trigonal curves by genus: 3  4  5  6  7  8  9  10  12  13  14 
Some interesting families or a random refined passport

Search

Find

Label
e.g. 2.12-4.0.2-2-2-3 or 3.168-42.0.2-3-7.2