Show commands: Magma
Group invariants
Abstract group: | $C_2^3:C_7$ |
| |
Order: | $56=2^{3} \cdot 7$ |
| |
Cyclic: | no |
| |
Abelian: | no |
| |
Solvable: | yes |
| |
Nilpotency class: | not nilpotent |
|
Group action invariants
Degree $n$: | $8$ |
| |
Transitive number $t$: | $25$ |
| |
CHM label: | $E(8):7=F_{56}(8)$ | ||
Parity: | $1$ |
| |
Primitive: | yes |
| |
$\card{\Aut(F/K)}$: | $1$ |
| |
Generators: | $(1,3)(2,8)(4,6)(5,7)$, $(1,2,6,3,4,5,7)$, $(1,8)(2,3)(4,5)(6,7)$, $(1,5)(2,6)(3,7)(4,8)$ |
|
Low degree resolvents
$\card{(G/N)}$ Galois groups for stem field(s) $7$: $C_7$ Resolvents shown for degrees $\leq 47$
Subfields
Degree 2: None
Degree 4: None
Low degree siblings
14T6, 28T11Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy classes
Label | Cycle Type | Size | Order | Index | Representative |
1A | $1^{8}$ | $1$ | $1$ | $0$ | $()$ |
2A | $2^{4}$ | $7$ | $2$ | $4$ | $(1,2)(3,8)(4,7)(5,6)$ |
7A1 | $7,1$ | $8$ | $7$ | $6$ | $(1,8,4,6,3,5,2)$ |
7A-1 | $7,1$ | $8$ | $7$ | $6$ | $(1,2,5,3,6,4,8)$ |
7A2 | $7,1$ | $8$ | $7$ | $6$ | $(1,4,3,2,8,6,5)$ |
7A-2 | $7,1$ | $8$ | $7$ | $6$ | $(1,5,6,8,2,3,4)$ |
7A3 | $7,1$ | $8$ | $7$ | $6$ | $(1,6,2,4,5,8,3)$ |
7A-3 | $7,1$ | $8$ | $7$ | $6$ | $(1,3,8,5,4,2,6)$ |
Malle's constant $a(G)$: $1/4$
Character table
1A | 2A | 7A1 | 7A-1 | 7A2 | 7A-2 | 7A3 | 7A-3 | ||
Size | 1 | 7 | 8 | 8 | 8 | 8 | 8 | 8 | |
2 P | 1A | 1A | 7A2 | 7A-2 | 7A-3 | 7A3 | 7A-1 | 7A1 | |
7 P | 1A | 2A | 7A3 | 7A-3 | 7A-1 | 7A1 | 7A2 | 7A-2 | |
Type | |||||||||
56.11.1a | R | ||||||||
56.11.1b1 | C | ||||||||
56.11.1b2 | C | ||||||||
56.11.1b3 | C | ||||||||
56.11.1b4 | C | ||||||||
56.11.1b5 | C | ||||||||
56.11.1b6 | C | ||||||||
56.11.7a | R |
Regular extensions
$f_{ 1 } =$ |
$x^{8} + \left(8 t^{7} - 8 t^{6} + 4 t^{5} + 44 t^{4} + 8 t^{3} - 72 t^{2} + 32 t + 24\right) x^{6} + \left(16 t^{10} + 16 t^{9} + 32 t^{8} + 112 t^{7} + 240 t^{6} + 128 t^{5} + 208 t^{4} + 128 t^{3} - 496 t^{2} - 1408 t - 576\right) x^{5} + \left(16 t^{14} - 48 t^{13} + 296 t^{12} - 16 t^{11} + 254 t^{10} + 3132 t^{9} + 878 t^{8} + 4440 t^{7} + 14096 t^{6} + 11312 t^{5} + 9840 t^{4} + 28024 t^{3} + 22680 t^{2} + 5464 t + 632\right) x^{4} + \left(64 t^{17} - 384 t^{16} + 1760 t^{15} - 3264 t^{14} + 5216 t^{13} + 4704 t^{12} - 3968 t^{11} + 26080 t^{10} + 40224 t^{9} + 25312 t^{8} + 112800 t^{7} + 142944 t^{6} + 119744 t^{5} + 241408 t^{4} + 217600 t^{3} - 17600 t^{2} - 77184 t - 19456\right) x^{3} + \left(192 t^{20} - 1312 t^{19} + 6464 t^{18} - 16424 t^{17} + 31608 t^{16} - 13012 t^{15} - 13572 t^{14} + 102612 t^{13} + 103284 t^{12} - 76824 t^{11} + 487728 t^{10} + 676496 t^{9} + 334984 t^{8} + 793760 t^{7} + 1952512 t^{6} + 1668064 t^{5} + 594224 t^{4} + 175392 t^{3} + 546048 t^{2} + 493408 t + 118368\right) x^{2} + \left(256 t^{23} - 1984 t^{22} + 10176 t^{21} - 29616 t^{20} + 60720 t^{19} - 53168 t^{18} - 10240 t^{17} + 144816 t^{16} + 33424 t^{15} - 390336 t^{14} + 816416 t^{13} + 131424 t^{12} - 1535648 t^{11} + 209744 t^{10} + 933760 t^{9} - 6847808 t^{8} - 9344576 t^{7} - 5302016 t^{6} - 14400768 t^{5} - 30617344 t^{4} - 26949056 t^{3} - 10302784 t^{2} - 1531008 t - 64384\right) x + \left(256 t^{26} - 1600 t^{25} + 7504 t^{24} - 16912 t^{23} + 31496 t^{22} - 12464 t^{21} + 32737 t^{20} + 6180 t^{19} + 244678 t^{18} + 193164 t^{17} + 225065 t^{16} + 794392 t^{15} + 2715920 t^{14} + 862232 t^{13} + 593080 t^{12} + 8972960 t^{11} + 8883632 t^{10} - 7135704 t^{9} + 3026152 t^{8} + 28484512 t^{7} + 5926992 t^{6} - 23207072 t^{5} + 21056176 t^{4} + 77797696 t^{3} + 65774384 t^{2} + 23777632 t + 3256912\right)$
|