Group action invariants
| Degree $n$ : | $8$ | |
| Transitive number $t$ : | $25$ | |
| Group : | $C_2^3:C_7$ | |
| CHM label : | $E(8):7=F_{56}(8)$ | |
| Parity: | $1$ | |
| Primitive: | Yes | |
| Nilpotency class: | $-1$ (not nilpotent) | |
| Generators: | (1,3)(2,8)(4,6)(5,7), (1,2,6,3,4,5,7), (1,8)(2,3)(4,5)(6,7), (1,5)(2,6)(3,7)(4,8) | |
| $|\Aut(F/K)|$: | $1$ |
Low degree resolvents
|G/N| Galois groups for stem field(s) 7: $C_7$ Resolvents shown for degrees $\leq 47$
Subfields
Degree 2: None
Degree 4: None
Low degree siblings
14T6, 28T11Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy Classes
| Cycle Type | Size | Order | Representative |
| $ 1, 1, 1, 1, 1, 1, 1, 1 $ | $1$ | $1$ | $()$ |
| $ 7, 1 $ | $8$ | $7$ | $(2,3,6,5,7,8,4)$ |
| $ 7, 1 $ | $8$ | $7$ | $(2,4,8,7,5,6,3)$ |
| $ 7, 1 $ | $8$ | $7$ | $(2,5,4,6,8,3,7)$ |
| $ 7, 1 $ | $8$ | $7$ | $(2,6,7,4,3,5,8)$ |
| $ 7, 1 $ | $8$ | $7$ | $(2,7,3,8,6,4,5)$ |
| $ 7, 1 $ | $8$ | $7$ | $(2,8,5,3,4,7,6)$ |
| $ 2, 2, 2, 2 $ | $7$ | $2$ | $(1,2)(3,8)(4,7)(5,6)$ |
Group invariants
| Order: | $56=2^{3} \cdot 7$ | |
| Cyclic: | No | |
| Abelian: | No | |
| Solvable: | Yes | |
| GAP id: | [56, 11] |
| Character table: |
2 3 . . . . . . 3
7 1 1 1 1 1 1 1 .
1a 7a 7b 7c 7d 7e 7f 2a
2P 1a 7d 7f 7b 7e 7a 7c 1a
3P 1a 7c 7e 7d 7b 7f 7a 2a
5P 1a 7f 7d 7a 7c 7b 7e 2a
7P 1a 1a 1a 1a 1a 1a 1a 2a
X.1 1 1 1 1 1 1 1 1
X.2 1 A /A C B /C /B 1
X.3 1 B /B /A /C A C 1
X.4 1 C /C B /A /B A 1
X.5 1 /C C /B A B /A 1
X.6 1 /B B A C /A /C 1
X.7 1 /A A /C /B C B 1
X.8 7 . . . . . . -1
A = E(7)^6
B = E(7)^5
C = E(7)^4
|