Show commands: Magma
Group invariants
Abstract group: | $Q_8$ |
| |
Order: | $8=2^{3}$ |
| |
Cyclic: | no |
| |
Abelian: | no |
| |
Solvable: | yes |
| |
Nilpotency class: | $2$ |
|
Group action invariants
Degree $n$: | $8$ |
| |
Transitive number $t$: | $5$ |
| |
CHM label: | $Q_{8}(8)$ | ||
Parity: | $1$ |
| |
Primitive: | no |
| |
$\card{\Aut(F/K)}$: | $8$ |
| |
Generators: | $(1,2,3,8)(4,5,6,7)$, $(1,7,3,5)(2,6,8,4)$ |
|
Low degree resolvents
$\card{(G/N)}$ Galois groups for stem field(s) $2$: $C_2$ x 3 $4$: $C_2^2$ Resolvents shown for degrees $\leq 47$
Subfields
Degree 2: $C_2$ x 3
Degree 4: $C_2^2$
Low degree siblings
There are no siblings with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy classes
Label | Cycle Type | Size | Order | Index | Representative |
1A | $1^{8}$ | $1$ | $1$ | $0$ | $()$ |
2A | $2^{4}$ | $1$ | $2$ | $4$ | $(1,3)(2,8)(4,6)(5,7)$ |
4A | $4^{2}$ | $2$ | $4$ | $6$ | $(1,2,3,8)(4,5,6,7)$ |
4B | $4^{2}$ | $2$ | $4$ | $6$ | $(1,7,3,5)(2,6,8,4)$ |
4C | $4^{2}$ | $2$ | $4$ | $6$ | $(1,4,3,6)(2,7,8,5)$ |
Malle's constant $a(G)$: $1/4$
Character table
1A | 2A | 4A | 4B | 4C | ||
Size | 1 | 1 | 2 | 2 | 2 | |
2 P | 1A | 1A | 2A | 2A | 2A | |
Type | ||||||
8.4.1a | R | |||||
8.4.1b | R | |||||
8.4.1c | R | |||||
8.4.1d | R | |||||
8.4.2a | S |
Regular extensions
$f_{ 1 } =$ |
$x^{8} + \left(t^{3} + 8 t\right) x^{7} + \left(t^{4} + 4 t^{2} - 28\right) x^{6} + \left(-7 t^{3} - 56 t\right) x^{5} + \left(-2 t^{4} - 8 t^{2} + 70\right) x^{4} + \left(7 t^{3} + 56 t\right) x^{3} + \left(t^{4} + 4 t^{2} - 28\right) x^{2} + \left(-t^{3} - 8 t\right) x + 1$
|