Properties

Label 8T5
8T5 1 2 1->2 7 1->7 3 2->3 6 2->6 5 3->5 8 3->8 4 4->2 4->5 5->1 5->6 6->7 6->8 7->3 7->4 8->1 8->4
Degree $8$
Order $8$
Cyclic no
Abelian no
Solvable yes
Primitive no
$p$-group yes
Group: $Q_8$

Related objects

Downloads

Learn more

Show commands: Magma

Copy content magma:G := TransitiveGroup(8, 5);
 

Group invariants

Abstract group:  $Q_8$
Copy content magma:IdentifyGroup(G);
 
Order:  $8=2^{3}$
Copy content magma:Order(G);
 
Cyclic:  no
Copy content magma:IsCyclic(G);
 
Abelian:  no
Copy content magma:IsAbelian(G);
 
Solvable:  yes
Copy content magma:IsSolvable(G);
 
Nilpotency class:  $2$
Copy content magma:NilpotencyClass(G);
 

Group action invariants

Degree $n$:  $8$
Copy content magma:t, n := TransitiveGroupIdentification(G); n;
 
Transitive number $t$:  $5$
Copy content magma:t, n := TransitiveGroupIdentification(G); t;
 
CHM label:   $Q_{8}(8)$
Parity:  $1$
Copy content magma:IsEven(G);
 
Primitive:  no
Copy content magma:IsPrimitive(G);
 
$\card{\Aut(F/K)}$:  $8$
Copy content magma:Order(Centralizer(SymmetricGroup(n), G));
 
Generators:  $(1,2,3,8)(4,5,6,7)$, $(1,7,3,5)(2,6,8,4)$
Copy content magma:Generators(G);
 

Low degree resolvents

$\card{(G/N)}$Galois groups for stem field(s)
$2$:  $C_2$ x 3
$4$:  $C_2^2$

Resolvents shown for degrees $\leq 47$

Subfields

Degree 2: $C_2$ x 3

Degree 4: $C_2^2$

Low degree siblings

There are no siblings with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.

Conjugacy classes

LabelCycle TypeSizeOrderIndexRepresentative
1A $1^{8}$ $1$ $1$ $0$ $()$
2A $2^{4}$ $1$ $2$ $4$ $(1,3)(2,8)(4,6)(5,7)$
4A $4^{2}$ $2$ $4$ $6$ $(1,2,3,8)(4,5,6,7)$
4B $4^{2}$ $2$ $4$ $6$ $(1,7,3,5)(2,6,8,4)$
4C $4^{2}$ $2$ $4$ $6$ $(1,4,3,6)(2,7,8,5)$

Malle's constant $a(G)$:     $1/4$

Copy content magma:ConjugacyClasses(G);
 

Character table

1A 2A 4A 4B 4C
Size 1 1 2 2 2
2 P 1A 1A 2A 2A 2A
Type
8.4.1a R 1 1 1 1 1
8.4.1b R 1 1 1 1 1
8.4.1c R 1 1 1 1 1
8.4.1d R 1 1 1 1 1
8.4.2a S 2 2 0 0 0

Copy content magma:CharacterTable(G);
 

Regular extensions

$f_{ 1 } =$ $x^{8} + \left(t^{3} + 8 t\right) x^{7} + \left(t^{4} + 4 t^{2} - 28\right) x^{6} + \left(-7 t^{3} - 56 t\right) x^{5} + \left(-2 t^{4} - 8 t^{2} + 70\right) x^{4} + \left(7 t^{3} + 56 t\right) x^{3} + \left(t^{4} + 4 t^{2} - 28\right) x^{2} + \left(-t^{3} - 8 t\right) x + 1$ Copy content Toggle raw display