Show commands:
Magma
magma: G := TransitiveGroup(8, 5);
Group action invariants
Degree $n$: | $8$ | magma: t, n := TransitiveGroupIdentification(G); n;
| |
Transitive number $t$: | $5$ | magma: t, n := TransitiveGroupIdentification(G); t;
| |
Group: | $Q_8$ | ||
CHM label: | $Q_{8}(8)$ | ||
Parity: | $1$ | magma: IsEven(G);
| |
Primitive: | no | magma: IsPrimitive(G);
| magma: NilpotencyClass(G);
|
$\card{\Aut(F/K)}$: | $8$ | magma: Order(Centralizer(SymmetricGroup(n), G));
| |
Generators: | (1,2,3,8)(4,5,6,7), (1,7,3,5)(2,6,8,4) | magma: Generators(G);
|
Low degree resolvents
$\card{(G/N)}$ Galois groups for stem field(s) $2$: $C_2$ x 3 $4$: $C_2^2$ Resolvents shown for degrees $\leq 47$
Subfields
Degree 2: $C_2$ x 3
Degree 4: $C_2^2$
Low degree siblings
There are no siblings with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy classes
Label | Cycle Type | Size | Order | Index | Representative |
1A | $1^{8}$ | $1$ | $1$ | $0$ | $()$ |
2A | $2^{4}$ | $1$ | $2$ | $4$ | $(1,3)(2,8)(4,6)(5,7)$ |
4A | $4^{2}$ | $2$ | $4$ | $6$ | $(1,7,3,5)(2,6,8,4)$ |
4B | $4^{2}$ | $2$ | $4$ | $6$ | $(1,4,3,6)(2,7,8,5)$ |
4C | $4^{2}$ | $2$ | $4$ | $6$ | $(1,2,3,8)(4,5,6,7)$ |
Malle's constant $a(G)$: $1/4$
magma: ConjugacyClasses(G);
Group invariants
Order: | $8=2^{3}$ | magma: Order(G);
| |
Cyclic: | no | magma: IsCyclic(G);
| |
Abelian: | no | magma: IsAbelian(G);
| |
Solvable: | yes | magma: IsSolvable(G);
| |
Nilpotency class: | $2$ | ||
Label: | 8.4 | magma: IdentifyGroup(G);
| |
Character table: |
1A | 2A | 4A | 4B | 4C | ||
Size | 1 | 1 | 2 | 2 | 2 | |
2 P | 1A | 1A | 2A | 2A | 2A | |
Type | ||||||
8.4.1a | R | |||||
8.4.1b | R | |||||
8.4.1c | R | |||||
8.4.1d | R | |||||
8.4.2a | S |
magma: CharacterTable(G);