Group action invariants
| Degree $n$ : | $8$ | |
| Transitive number $t$ : | $39$ | |
| Group : | $C_2^3:S_4$ | |
| CHM label : | $[2^{3}]S(4)$ | |
| Parity: | $1$ | |
| Primitive: | No | |
| Nilpotency class: | $-1$ (not nilpotent) | |
| Generators: | (1,3)(2,8)(4,6)(5,7), (1,6)(2,3,5,4), (1,8)(2,3)(4,5)(6,7), (1,2,3)(4,6,5), (1,5)(2,6)(3,7)(4,8) | |
| $|\Aut(F/K)|$: | $2$ |
Low degree resolvents
|G/N| Galois groups for stem field(s) 2: $C_2$ 6: $S_3$ 24: $S_4$ x 3 96: $V_4^2:S_3$ Resolvents shown for degrees $\leq 47$
Subfields
Degree 2: None
Degree 4: $S_4$
Low degree siblings
8T39 x 5, 16T442 x 3, 24T333 x 6, 24T431 x 2, 32T2213 x 2Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy Classes
| Cycle Type | Size | Order | Representative |
| $ 1, 1, 1, 1, 1, 1, 1, 1 $ | $1$ | $1$ | $()$ |
| $ 2, 2, 1, 1, 1, 1 $ | $6$ | $2$ | $(3,4)(7,8)$ |
| $ 2, 2, 1, 1, 1, 1 $ | $12$ | $2$ | $(3,7)(4,8)$ |
| $ 4, 2, 1, 1 $ | $24$ | $4$ | $(2,3,5,4)(7,8)$ |
| $ 3, 3, 1, 1 $ | $32$ | $3$ | $(2,3,7)(4,8,5)$ |
| $ 2, 2, 2, 2 $ | $12$ | $2$ | $(1,2)(3,4)(5,6)(7,8)$ |
| $ 2, 2, 2, 2 $ | $6$ | $2$ | $(1,2)(3,7)(4,8)(5,6)$ |
| $ 2, 2, 2, 2 $ | $6$ | $2$ | $(1,2)(3,8)(4,7)(5,6)$ |
| $ 6, 2 $ | $32$ | $6$ | $(1,2,3,6,5,4)(7,8)$ |
| $ 4, 4 $ | $24$ | $4$ | $(1,2,3,7)(4,8,6,5)$ |
| $ 4, 4 $ | $24$ | $4$ | $(1,2,3,8)(4,7,6,5)$ |
| $ 4, 4 $ | $12$ | $4$ | $(1,2,6,5)(3,7,4,8)$ |
| $ 2, 2, 2, 2 $ | $1$ | $2$ | $(1,6)(2,5)(3,4)(7,8)$ |
Group invariants
| Order: | $192=2^{6} \cdot 3$ | |
| Cyclic: | No | |
| Abelian: | No | |
| Solvable: | Yes | |
| GAP id: | [192, 1493] |
| Character table: |
2 6 5 4 3 1 4 5 5 1 3 3 4 6
3 1 . . . 1 . . . 1 . . . 1
1a 2a 2b 4a 3a 2c 2d 2e 6a 4b 4c 4d 2f
2P 1a 1a 1a 2a 3a 1a 1a 1a 3a 2d 2e 2f 1a
3P 1a 2a 2b 4a 1a 2c 2d 2e 2f 4b 4c 4d 2f
5P 1a 2a 2b 4a 3a 2c 2d 2e 6a 4b 4c 4d 2f
X.1 1 1 1 1 1 1 1 1 1 1 1 1 1
X.2 1 1 -1 -1 1 -1 1 1 1 -1 -1 1 1
X.3 2 2 . . -1 . 2 2 -1 . . 2 2
X.4 3 -1 -1 1 . -1 3 -1 . -1 1 -1 3
X.5 3 -1 1 -1 . 1 3 -1 . 1 -1 -1 3
X.6 3 3 -1 -1 . -1 -1 -1 . 1 1 -1 3
X.7 3 3 1 1 . 1 -1 -1 . -1 -1 -1 3
X.8 3 -1 -1 1 . -1 -1 3 . 1 -1 -1 3
X.9 3 -1 1 -1 . 1 -1 3 . -1 1 -1 3
X.10 4 . 2 . 1 -2 . . -1 . . . -4
X.11 4 . -2 . 1 2 . . -1 . . . -4
X.12 6 -2 . . . . -2 -2 . . . 2 6
X.13 8 . . . -1 . . . 1 . . . -8
|