Show commands: Magma
Group invariants
| Abstract group: | $(C_4^2 : C_2):C_2$ |
| |
| Order: | $64=2^{6}$ |
| |
| Cyclic: | no |
| |
| Abelian: | no |
| |
| Solvable: | yes |
| |
| Nilpotency class: | $3$ |
|
Group action invariants
| Degree $n$: | $8$ |
| |
| Transitive number $t$: | $26$ |
| |
| CHM label: | $1/2[2^{4}]eD(4)$ | ||
| Parity: | $-1$ |
| |
| Primitive: | no |
| |
| $\card{\Aut(F/K)}$: | $2$ |
| |
| Generators: | $(1,2,3,4,5,6,7,8)$, $(1,7)(3,5)(4,8)$, $(1,5)(4,8)$ |
|
Low degree resolvents
$\card{(G/N)}$ Galois groups for stem field(s) $2$: $C_2$ x 7 $4$: $C_2^2$ x 7 $8$: $D_{4}$ x 6, $C_2^3$ $16$: $D_4\times C_2$ x 3 $32$: $C_2^2 \wr C_2$ Resolvents shown for degrees $\leq 47$
Subfields
Degree 2: $C_2$
Degree 4: $D_{4}$
Low degree siblings
8T26 x 3, 16T135 x 2, 16T141 x 2, 16T142 x 2, 16T152 x 2, 32T147 x 2, 32T148 x 2, 32T155, 32T156Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy classes
| Label | Cycle Type | Size | Order | Index | Representative |
| 1A | $1^{8}$ | $1$ | $1$ | $0$ | $()$ |
| 2A | $2^{4}$ | $1$ | $2$ | $4$ | $(1,5)(2,6)(3,7)(4,8)$ |
| 2B | $2^{2},1^{4}$ | $2$ | $2$ | $2$ | $(1,5)(3,7)$ |
| 2C | $2^{2},1^{4}$ | $4$ | $2$ | $2$ | $(3,7)(4,8)$ |
| 2D | $2^{4}$ | $4$ | $2$ | $4$ | $(1,7)(2,8)(3,5)(4,6)$ |
| 2E | $2^{4}$ | $4$ | $2$ | $4$ | $(1,2)(3,4)(5,6)(7,8)$ |
| 2F | $2^{4}$ | $4$ | $2$ | $4$ | $(1,2)(3,8)(4,7)(5,6)$ |
| 2G | $2^{3},1^{2}$ | $8$ | $2$ | $3$ | $(1,7)(3,5)(4,8)$ |
| 4A | $4^{2}$ | $2$ | $4$ | $6$ | $(1,7,5,3)(2,8,6,4)$ |
| 4B | $4^{2}$ | $2$ | $4$ | $6$ | $(1,3,5,7)(2,8,6,4)$ |
| 4C | $4,1^{4}$ | $4$ | $4$ | $3$ | $(1,7,5,3)$ |
| 4D | $4,2^{2}$ | $4$ | $4$ | $5$ | $(1,7,5,3)(2,6)(4,8)$ |
| 4E | $4^{2}$ | $4$ | $4$ | $6$ | $(1,6,5,2)(3,8,7,4)$ |
| 4F | $4^{2}$ | $4$ | $4$ | $6$ | $(1,6,5,2)(3,4,7,8)$ |
| 8A | $8$ | $8$ | $8$ | $7$ | $(1,8,7,6,5,4,3,2)$ |
| 8B | $8$ | $8$ | $8$ | $7$ | $(1,8,3,6,5,4,7,2)$ |
Malle's constant $a(G)$: $1/2$
Character table
| 1A | 2A | 2B | 2C | 2D | 2E | 2F | 2G | 4A | 4B | 4C | 4D | 4E | 4F | 8A | 8B | ||
| Size | 1 | 1 | 2 | 4 | 4 | 4 | 4 | 8 | 2 | 2 | 4 | 4 | 4 | 4 | 8 | 8 | |
| 2 P | 1A | 1A | 1A | 1A | 1A | 1A | 1A | 1A | 2A | 2A | 2B | 2B | 2A | 2A | 4A | 4B | |
| Type | |||||||||||||||||
| 64.134.1a | R | ||||||||||||||||
| 64.134.1b | R | ||||||||||||||||
| 64.134.1c | R | ||||||||||||||||
| 64.134.1d | R | ||||||||||||||||
| 64.134.1e | R | ||||||||||||||||
| 64.134.1f | R | ||||||||||||||||
| 64.134.1g | R | ||||||||||||||||
| 64.134.1h | R | ||||||||||||||||
| 64.134.2a | R | ||||||||||||||||
| 64.134.2b | R | ||||||||||||||||
| 64.134.2c | R | ||||||||||||||||
| 64.134.2d | R | ||||||||||||||||
| 64.134.2e | R | ||||||||||||||||
| 64.134.2f | R | ||||||||||||||||
| 64.134.4a | R | ||||||||||||||||
| 64.134.4b | R |
Regular extensions
| $f_{ 1 } =$ |
$x^{8} + 4 x^{6} + \left(3 t + 5\right) x^{4} + \left(6 t + 2\right) x^{2} - t$
|