Group action invariants
| Degree $n$ : | $8$ | |
| Transitive number $t$ : | $26$ | |
| Group : | $(C_4^2 : C_2):C_2$ | |
| CHM label : | $1/2[2^{4}]eD(4)$ | |
| Parity: | $-1$ | |
| Primitive: | No | |
| Nilpotency class: | $3$ | |
| Generators: | (1,2,3,4,5,6,7,8), (1,7)(3,5)(4,8), (1,5)(4,8) | |
| $|\Aut(F/K)|$: | $2$ |
Low degree resolvents
|G/N| Galois groups for stem field(s) 2: $C_2$ x 7 4: $C_2^2$ x 7 8: $D_{4}$ x 6, $C_2^3$ 16: $D_4\times C_2$ x 3 32: $C_2^2 \wr C_2$ Resolvents shown for degrees $\leq 47$
Subfields
Degree 2: $C_2$
Degree 4: $D_{4}$
Low degree siblings
8T26 x 3, 16T135 x 2, 16T141 x 2, 16T142 x 2, 16T152 x 2, 32T147 x 2, 32T148 x 2, 32T155, 32T156Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy Classes
| Cycle Type | Size | Order | Representative |
| $ 1, 1, 1, 1, 1, 1, 1, 1 $ | $1$ | $1$ | $()$ |
| $ 2, 2, 1, 1, 1, 1 $ | $4$ | $2$ | $(3,7)(4,8)$ |
| $ 4, 1, 1, 1, 1 $ | $4$ | $4$ | $(2,4,6,8)$ |
| $ 2, 2, 2, 1, 1 $ | $8$ | $2$ | $(2,4)(3,7)(6,8)$ |
| $ 2, 2, 1, 1, 1, 1 $ | $2$ | $2$ | $(2,6)(4,8)$ |
| $ 2, 2, 2, 2 $ | $4$ | $2$ | $(1,2)(3,4)(5,6)(7,8)$ |
| $ 2, 2, 2, 2 $ | $4$ | $2$ | $(1,2)(3,8)(4,7)(5,6)$ |
| $ 8 $ | $8$ | $8$ | $(1,2,3,4,5,6,7,8)$ |
| $ 8 $ | $8$ | $8$ | $(1,2,3,8,5,6,7,4)$ |
| $ 4, 4 $ | $4$ | $4$ | $(1,2,5,6)(3,4,7,8)$ |
| $ 4, 4 $ | $4$ | $4$ | $(1,2,5,6)(3,8,7,4)$ |
| $ 2, 2, 2, 2 $ | $4$ | $2$ | $(1,3)(2,4)(5,7)(6,8)$ |
| $ 4, 4 $ | $2$ | $4$ | $(1,3,5,7)(2,4,6,8)$ |
| $ 4, 2, 2 $ | $4$ | $4$ | $(1,3,5,7)(2,6)(4,8)$ |
| $ 4, 4 $ | $2$ | $4$ | $(1,3,5,7)(2,8,6,4)$ |
| $ 2, 2, 2, 2 $ | $1$ | $2$ | $(1,5)(2,6)(3,7)(4,8)$ |
Group invariants
| Order: | $64=2^{6}$ | |
| Cyclic: | No | |
| Abelian: | No | |
| Solvable: | Yes | |
| GAP id: | [64, 134] |
| Character table: |
2 6 4 4 3 5 4 4 3 3 4 4 4 5 4 5 6
1a 2a 4a 2b 2c 2d 2e 8a 8b 4b 4c 2f 4d 4e 4f 2g
2P 1a 1a 2c 1a 1a 1a 1a 4d 4f 2g 2g 1a 2g 2c 2g 1a
3P 1a 2a 4a 2b 2c 2d 2e 8a 8b 4b 4c 2f 4d 4e 4f 2g
5P 1a 2a 4a 2b 2c 2d 2e 8a 8b 4b 4c 2f 4d 4e 4f 2g
7P 1a 2a 4a 2b 2c 2d 2e 8a 8b 4b 4c 2f 4d 4e 4f 2g
X.1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
X.2 1 -1 -1 1 1 -1 1 1 -1 -1 1 -1 1 -1 1 1
X.3 1 -1 -1 1 1 1 -1 -1 1 1 -1 -1 1 -1 1 1
X.4 1 -1 1 -1 1 -1 1 -1 1 -1 1 -1 1 1 1 1
X.5 1 -1 1 -1 1 1 -1 1 -1 1 -1 -1 1 1 1 1
X.6 1 1 -1 -1 1 -1 -1 1 1 -1 -1 1 1 -1 1 1
X.7 1 1 -1 -1 1 1 1 -1 -1 1 1 1 1 -1 1 1
X.8 1 1 1 1 1 -1 -1 -1 -1 -1 -1 1 1 1 1 1
X.9 2 -2 . . 2 . . . . . . 2 -2 . -2 2
X.10 2 2 . . 2 . . . . . . -2 -2 . -2 2
X.11 2 . . . -2 -2 . . . 2 . . -2 . 2 2
X.12 2 . . . -2 . -2 . . . 2 . 2 . -2 2
X.13 2 . . . -2 . 2 . . . -2 . 2 . -2 2
X.14 2 . . . -2 2 . . . -2 . . -2 . 2 2
X.15 4 . -2 . . . . . . . . . . 2 . -4
X.16 4 . 2 . . . . . . . . . . -2 . -4
|