Show commands: Magma
Group invariants
Abstract group: | $C_2^3: C_4$ |
| |
Order: | $32=2^{5}$ |
| |
Cyclic: | no |
| |
Abelian: | no |
| |
Solvable: | yes |
| |
Nilpotency class: | $3$ |
|
Group action invariants
Degree $n$: | $8$ |
| |
Transitive number $t$: | $20$ |
| |
CHM label: | $[2^{3}]4$ | ||
Parity: | $1$ |
| |
Primitive: | no |
| |
$\card{\Aut(F/K)}$: | $2$ |
| |
Generators: | $(1,2,3,8)(4,5,6,7)$, $(2,6)(3,7)$ |
|
Low degree resolvents
$\card{(G/N)}$ Galois groups for stem field(s) $2$: $C_2$ x 3 $4$: $C_4$ x 2, $C_2^2$ $8$: $D_{4}$ x 2, $C_4\times C_2$ $16$: $C_2^2:C_4$ Resolvents shown for degrees $\leq 47$
Subfields
Degree 2: $C_2$
Degree 4: $C_4$
Low degree siblings
8T19 x 2, 8T21, 16T33 x 2, 16T52, 16T53, 32T19Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy classes
Label | Cycle Type | Size | Order | Index | Representative |
1A | $1^{8}$ | $1$ | $1$ | $0$ | $()$ |
2A | $2^{4}$ | $1$ | $2$ | $4$ | $(1,5)(2,6)(3,7)(4,8)$ |
2B | $2^{2},1^{4}$ | $2$ | $2$ | $2$ | $(1,5)(3,7)$ |
2C | $2^{4}$ | $2$ | $2$ | $4$ | $(1,3)(2,8)(4,6)(5,7)$ |
2D | $2^{4}$ | $2$ | $2$ | $4$ | $(1,3)(2,4)(5,7)(6,8)$ |
2E | $2^{2},1^{4}$ | $4$ | $2$ | $2$ | $(1,5)(2,6)$ |
4A | $4^{2}$ | $4$ | $4$ | $6$ | $(1,3,5,7)(2,8,6,4)$ |
4B1 | $4^{2}$ | $4$ | $4$ | $6$ | $(1,2,3,8)(4,5,6,7)$ |
4B-1 | $4^{2}$ | $4$ | $4$ | $6$ | $(1,8,3,2)(4,7,6,5)$ |
4C1 | $4^{2}$ | $4$ | $4$ | $6$ | $(1,8,3,6)(2,5,4,7)$ |
4C-1 | $4^{2}$ | $4$ | $4$ | $6$ | $(1,6,7,4)(2,3,8,5)$ |
Malle's constant $a(G)$: $1/2$
Character table
1A | 2A | 2B | 2C | 2D | 2E | 4A | 4B1 | 4B-1 | 4C1 | 4C-1 | ||
Size | 1 | 1 | 2 | 2 | 2 | 4 | 4 | 4 | 4 | 4 | 4 | |
2 P | 1A | 1A | 1A | 1A | 1A | 1A | 2A | 2C | 2C | 2D | 2D | |
Type | ||||||||||||
32.6.1a | R | |||||||||||
32.6.1b | R | |||||||||||
32.6.1c | R | |||||||||||
32.6.1d | R | |||||||||||
32.6.1e1 | C | |||||||||||
32.6.1e2 | C | |||||||||||
32.6.1f1 | C | |||||||||||
32.6.1f2 | C | |||||||||||
32.6.2a | R | |||||||||||
32.6.2b | R | |||||||||||
32.6.4a | R |
Regular extensions
$f_{ 1 } =$ |
$3 x^{8} + \left(t^{2} - 5\right) x^{6} + \left(-3 t^{2} - 75\right) x^{4} + \left(-t^{2} + 125\right) x^{2} + 3 t^{2}$
|