Properties

Label 8T20
8T20 1 2 1->2 3 2->3 6 2->6 7 3->7 8 3->8 4 5 4->5 5->6 6->7 7->4 8->1
Degree $8$
Order $32$
Cyclic no
Abelian no
Solvable yes
Primitive no
$p$-group yes
Group: $C_2^3: C_4$

Related objects

Downloads

Learn more

Show commands: Magma

Copy content magma:G := TransitiveGroup(8, 20);
 

Group invariants

Abstract group:  $C_2^3: C_4$
Copy content magma:IdentifyGroup(G);
 
Order:  $32=2^{5}$
Copy content magma:Order(G);
 
Cyclic:  no
Copy content magma:IsCyclic(G);
 
Abelian:  no
Copy content magma:IsAbelian(G);
 
Solvable:  yes
Copy content magma:IsSolvable(G);
 
Nilpotency class:  $3$
Copy content magma:NilpotencyClass(G);
 

Group action invariants

Degree $n$:  $8$
Copy content magma:t, n := TransitiveGroupIdentification(G); n;
 
Transitive number $t$:  $20$
Copy content magma:t, n := TransitiveGroupIdentification(G); t;
 
CHM label:   $[2^{3}]4$
Parity:  $1$
Copy content magma:IsEven(G);
 
Primitive:  no
Copy content magma:IsPrimitive(G);
 
$\card{\Aut(F/K)}$:  $2$
Copy content magma:Order(Centralizer(SymmetricGroup(n), G));
 
Generators:  $(1,2,3,8)(4,5,6,7)$, $(2,6)(3,7)$
Copy content magma:Generators(G);
 

Low degree resolvents

$\card{(G/N)}$Galois groups for stem field(s)
$2$:  $C_2$ x 3
$4$:  $C_4$ x 2, $C_2^2$
$8$:  $D_{4}$ x 2, $C_4\times C_2$
$16$:  $C_2^2:C_4$

Resolvents shown for degrees $\leq 47$

Subfields

Degree 2: $C_2$

Degree 4: $C_4$

Low degree siblings

8T19 x 2, 8T21, 16T33 x 2, 16T52, 16T53, 32T19

Siblings are shown with degree $\leq 47$

A number field with this Galois group has no arithmetically equivalent fields.

Conjugacy classes

LabelCycle TypeSizeOrderIndexRepresentative
1A $1^{8}$ $1$ $1$ $0$ $()$
2A $2^{4}$ $1$ $2$ $4$ $(1,5)(2,6)(3,7)(4,8)$
2B $2^{2},1^{4}$ $2$ $2$ $2$ $(1,5)(3,7)$
2C $2^{4}$ $2$ $2$ $4$ $(1,3)(2,8)(4,6)(5,7)$
2D $2^{4}$ $2$ $2$ $4$ $(1,3)(2,4)(5,7)(6,8)$
2E $2^{2},1^{4}$ $4$ $2$ $2$ $(1,5)(2,6)$
4A $4^{2}$ $4$ $4$ $6$ $(1,3,5,7)(2,8,6,4)$
4B1 $4^{2}$ $4$ $4$ $6$ $(1,2,3,8)(4,5,6,7)$
4B-1 $4^{2}$ $4$ $4$ $6$ $(1,8,3,2)(4,7,6,5)$
4C1 $4^{2}$ $4$ $4$ $6$ $(1,8,3,6)(2,5,4,7)$
4C-1 $4^{2}$ $4$ $4$ $6$ $(1,6,7,4)(2,3,8,5)$

Malle's constant $a(G)$:     $1/2$

Copy content magma:ConjugacyClasses(G);
 

Character table

1A 2A 2B 2C 2D 2E 4A 4B1 4B-1 4C1 4C-1
Size 1 1 2 2 2 4 4 4 4 4 4
2 P 1A 1A 1A 1A 1A 1A 2A 2C 2C 2D 2D
Type
32.6.1a R 1 1 1 1 1 1 1 1 1 1 1
32.6.1b R 1 1 1 1 1 1 1 1 1 1 1
32.6.1c R 1 1 1 1 1 1 1 1 1 1 1
32.6.1d R 1 1 1 1 1 1 1 1 1 1 1
32.6.1e1 C 1 1 1 1 1 1 i i i 1 i
32.6.1e2 C 1 1 1 1 1 1 i i i 1 i
32.6.1f1 C 1 1 1 1 1 1 i i i 1 i
32.6.1f2 C 1 1 1 1 1 1 i i i 1 i
32.6.2a R 2 2 2 2 2 0 0 0 0 0 0
32.6.2b R 2 2 2 2 2 0 0 0 0 0 0
32.6.4a R 4 4 0 0 0 0 0 0 0 0 0

Copy content magma:CharacterTable(G);
 

Regular extensions

$f_{ 1 } =$ $3 x^{8} + \left(t^{2} - 5\right) x^{6} + \left(-3 t^{2} - 75\right) x^{4} + \left(-t^{2} + 125\right) x^{2} + 3 t^{2}$ Copy content Toggle raw display