Show commands:
Magma
magma: G := TransitiveGroup(8, 11);
Group action invariants
Degree $n$: | $8$ | magma: t, n := TransitiveGroupIdentification(G); n;
| |
Transitive number $t$: | $11$ | magma: t, n := TransitiveGroupIdentification(G); t;
| |
Group: | $Q_8:C_2$ | ||
CHM label: | $1/2[2^{3}]E(4)=Q_{8}:2$ | ||
Parity: | $1$ | magma: IsEven(G);
| |
Primitive: | no | magma: IsPrimitive(G);
| |
Nilpotency class: | $2$ | magma: NilpotencyClass(G);
| |
$\card{\Aut(F/K)}$: | $4$ | magma: Order(Centralizer(SymmetricGroup(n), G));
| |
Generators: | (1,3,5,7)(2,4,6,8), (1,5)(3,7), (1,4,5,8)(2,3,6,7) | magma: Generators(G);
|
Low degree resolvents
|G/N| Galois groups for stem field(s) $2$: $C_2$ x 7 $4$: $C_2^2$ x 7 $8$: $C_2^3$ Resolvents shown for degrees $\leq 47$
Subfields
Degree 2: $C_2$ x 3
Degree 4: $C_2^2$
Low degree siblings
8T11 x 2, 16T11Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy classes
Cycle Type | Size | Order | Representative |
$ 1, 1, 1, 1, 1, 1, 1, 1 $ | $1$ | $1$ | $()$ |
$ 2, 2, 1, 1, 1, 1 $ | $2$ | $2$ | $(2,6)(4,8)$ |
$ 2, 2, 2, 2 $ | $2$ | $2$ | $(1,2)(3,4)(5,6)(7,8)$ |
$ 4, 4 $ | $2$ | $4$ | $(1,2,5,6)(3,4,7,8)$ |
$ 4, 4 $ | $1$ | $4$ | $(1,3,5,7)(2,4,6,8)$ |
$ 4, 4 $ | $2$ | $4$ | $(1,3,5,7)(2,8,6,4)$ |
$ 4, 4 $ | $2$ | $4$ | $(1,4,5,8)(2,3,6,7)$ |
$ 2, 2, 2, 2 $ | $2$ | $2$ | $(1,4)(2,7)(3,6)(5,8)$ |
$ 2, 2, 2, 2 $ | $1$ | $2$ | $(1,5)(2,6)(3,7)(4,8)$ |
$ 4, 4 $ | $1$ | $4$ | $(1,7,5,3)(2,8,6,4)$ |
magma: ConjugacyClasses(G);
Group invariants
Order: | $16=2^{4}$ | magma: Order(G);
| |
Cyclic: | no | magma: IsCyclic(G);
| |
Abelian: | no | magma: IsAbelian(G);
| |
Solvable: | yes | magma: IsSolvable(G);
| |
Label: | 16.13 | magma: IdentifyGroup(G);
|
Character table: |
2 4 3 3 3 4 3 3 3 4 4 1a 2a 2b 4a 4b 4c 4d 2c 2d 4e 2P 1a 1a 1a 2d 2d 2d 2d 1a 1a 2d 3P 1a 2a 2b 4a 4e 4c 4d 2c 2d 4b X.1 1 1 1 1 1 1 1 1 1 1 X.2 1 -1 -1 1 -1 1 1 -1 1 -1 X.3 1 -1 -1 1 1 -1 -1 1 1 1 X.4 1 -1 1 -1 -1 1 -1 1 1 -1 X.5 1 -1 1 -1 1 -1 1 -1 1 1 X.6 1 1 -1 -1 -1 -1 1 1 1 -1 X.7 1 1 -1 -1 1 1 -1 -1 1 1 X.8 1 1 1 1 -1 -1 -1 -1 1 -1 X.9 2 . . . A . . . -2 -A X.10 2 . . . -A . . . -2 A A = -2*E(4) = -2*Sqrt(-1) = -2i |
magma: CharacterTable(G);