Group action invariants
| Degree $n$ : | $8$ | |
| Transitive number $t$ : | $11$ | |
| Group : | $Q_8:C_2$ | |
| CHM label : | $1/2[2^{3}]E(4)=Q_{8}:2$ | |
| Parity: | $1$ | |
| Primitive: | No | |
| Nilpotency class: | $2$ | |
| Generators: | (1,3,5,7)(2,4,6,8), (1,5)(3,7), (1,4,5,8)(2,3,6,7) | |
| $|\Aut(F/K)|$: | $4$ |
Low degree resolvents
|G/N| Galois groups for stem field(s) 2: $C_2$ x 7 4: $C_2^2$ x 7 8: $C_2^3$ Resolvents shown for degrees $\leq 47$
Subfields
Degree 2: $C_2$ x 3
Degree 4: $C_2^2$
Low degree siblings
8T11 x 2, 16T11Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy Classes
| Cycle Type | Size | Order | Representative |
| $ 1, 1, 1, 1, 1, 1, 1, 1 $ | $1$ | $1$ | $()$ |
| $ 2, 2, 1, 1, 1, 1 $ | $2$ | $2$ | $(2,6)(4,8)$ |
| $ 2, 2, 2, 2 $ | $2$ | $2$ | $(1,2)(3,4)(5,6)(7,8)$ |
| $ 4, 4 $ | $2$ | $4$ | $(1,2,5,6)(3,4,7,8)$ |
| $ 4, 4 $ | $1$ | $4$ | $(1,3,5,7)(2,4,6,8)$ |
| $ 4, 4 $ | $2$ | $4$ | $(1,3,5,7)(2,8,6,4)$ |
| $ 4, 4 $ | $2$ | $4$ | $(1,4,5,8)(2,3,6,7)$ |
| $ 2, 2, 2, 2 $ | $2$ | $2$ | $(1,4)(2,7)(3,6)(5,8)$ |
| $ 2, 2, 2, 2 $ | $1$ | $2$ | $(1,5)(2,6)(3,7)(4,8)$ |
| $ 4, 4 $ | $1$ | $4$ | $(1,7,5,3)(2,8,6,4)$ |
Group invariants
| Order: | $16=2^{4}$ | |
| Cyclic: | No | |
| Abelian: | No | |
| Solvable: | Yes | |
| GAP id: | [16, 13] |
| Character table: |
2 4 3 3 3 4 3 3 3 4 4
1a 2a 2b 4a 4b 4c 4d 2c 2d 4e
2P 1a 1a 1a 2d 2d 2d 2d 1a 1a 2d
3P 1a 2a 2b 4a 4e 4c 4d 2c 2d 4b
X.1 1 1 1 1 1 1 1 1 1 1
X.2 1 -1 -1 1 -1 1 1 -1 1 -1
X.3 1 -1 -1 1 1 -1 -1 1 1 1
X.4 1 -1 1 -1 -1 1 -1 1 1 -1
X.5 1 -1 1 -1 1 -1 1 -1 1 1
X.6 1 1 -1 -1 -1 -1 1 1 1 -1
X.7 1 1 -1 -1 1 1 -1 -1 1 1
X.8 1 1 1 1 -1 -1 -1 -1 1 -1
X.9 2 . . . A . . . -2 -A
X.10 2 . . . -A . . . -2 A
A = -2*E(4)
= -2*Sqrt(-1) = -2i
|