Group action invariants
| Degree $n$ : | $8$ | |
| Transitive number $t$ : | $8$ | |
| Group : | $QD_{16}$ | |
| CHM label : | $2D_{8}(8)=[D(4)]2$ | |
| Parity: | $-1$ | |
| Primitive: | No | |
| Nilpotency class: | $3$ | |
| Generators: | (1,2,3,4,5,6,7,8), (1,3)(2,6)(5,7) | |
| $|\Aut(F/K)|$: | $2$ |
Low degree resolvents
|G/N| Galois groups for stem field(s) 2: $C_2$ x 3 4: $C_2^2$ 8: $D_{4}$ Resolvents shown for degrees $\leq 47$
Subfields
Degree 2: $C_2$
Degree 4: $D_{4}$
Low degree siblings
16T12Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy Classes
| Cycle Type | Size | Order | Representative |
| $ 1, 1, 1, 1, 1, 1, 1, 1 $ | $1$ | $1$ | $()$ |
| $ 2, 2, 2, 1, 1 $ | $4$ | $2$ | $(2,4)(3,7)(6,8)$ |
| $ 8 $ | $2$ | $8$ | $(1,2,3,4,5,6,7,8)$ |
| $ 4, 4 $ | $4$ | $4$ | $(1,2,5,6)(3,8,7,4)$ |
| $ 4, 4 $ | $2$ | $4$ | $(1,3,5,7)(2,4,6,8)$ |
| $ 2, 2, 2, 2 $ | $1$ | $2$ | $(1,5)(2,6)(3,7)(4,8)$ |
| $ 8 $ | $2$ | $8$ | $(1,6,3,8,5,2,7,4)$ |
Group invariants
| Order: | $16=2^{4}$ | |
| Cyclic: | No | |
| Abelian: | No | |
| Solvable: | Yes | |
| GAP id: | [16, 8] |
| Character table: |
2 4 2 3 2 3 4 3
1a 2a 8a 4a 4b 2b 8b
2P 1a 1a 4b 2b 2b 1a 4b
3P 1a 2a 8a 4a 4b 2b 8b
5P 1a 2a 8b 4a 4b 2b 8a
7P 1a 2a 8b 4a 4b 2b 8a
X.1 1 1 1 1 1 1 1
X.2 1 -1 -1 1 1 1 -1
X.3 1 -1 1 -1 1 1 1
X.4 1 1 -1 -1 1 1 -1
X.5 2 . . . -2 2 .
X.6 2 . A . . -2 -A
X.7 2 . -A . . -2 A
A = -E(8)-E(8)^3
= -Sqrt(-2) = -i2
|