Show commands:
Magma
magma: G := TransitiveGroup(8, 8);
Group action invariants
Degree $n$: | $8$ | magma: t, n := TransitiveGroupIdentification(G); n;
| |
Transitive number $t$: | $8$ | magma: t, n := TransitiveGroupIdentification(G); t;
| |
Group: | $QD_{16}$ | ||
CHM label: | $2D_{8}(8)=[D(4)]2$ | ||
Parity: | $-1$ | magma: IsEven(G);
| |
Primitive: | no | magma: IsPrimitive(G);
| magma: NilpotencyClass(G);
|
$\card{\Aut(F/K)}$: | $2$ | magma: Order(Centralizer(SymmetricGroup(n), G));
| |
Generators: | (1,2,3,4,5,6,7,8), (1,3)(2,6)(5,7) | magma: Generators(G);
|
Low degree resolvents
$\card{(G/N)}$ Galois groups for stem field(s) $2$: $C_2$ x 3 $4$: $C_2^2$ $8$: $D_{4}$ Resolvents shown for degrees $\leq 47$
Subfields
Degree 2: $C_2$
Degree 4: $D_{4}$
Low degree siblings
16T12Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy classes
Label | Cycle Type | Size | Order | Index | Representative |
1A | $1^{8}$ | $1$ | $1$ | $0$ | $()$ |
2A | $2^{4}$ | $1$ | $2$ | $4$ | $(1,5)(2,6)(3,7)(4,8)$ |
2B | $2^{3},1^{2}$ | $4$ | $2$ | $3$ | $(2,4)(3,7)(6,8)$ |
4A | $4^{2}$ | $2$ | $4$ | $6$ | $(1,3,5,7)(2,4,6,8)$ |
4B | $4^{2}$ | $4$ | $4$ | $6$ | $(1,2,5,6)(3,8,7,4)$ |
8A1 | $8$ | $2$ | $8$ | $7$ | $(1,2,3,4,5,6,7,8)$ |
8A-1 | $8$ | $2$ | $8$ | $7$ | $(1,6,3,8,5,2,7,4)$ |
Malle's constant $a(G)$: $1/3$
magma: ConjugacyClasses(G);
Group invariants
Order: | $16=2^{4}$ | magma: Order(G);
| |
Cyclic: | no | magma: IsCyclic(G);
| |
Abelian: | no | magma: IsAbelian(G);
| |
Solvable: | yes | magma: IsSolvable(G);
| |
Nilpotency class: | $3$ | ||
Label: | 16.8 | magma: IdentifyGroup(G);
| |
Character table: |
1A | 2A | 2B | 4A | 4B | 8A1 | 8A-1 | ||
Size | 1 | 1 | 4 | 2 | 4 | 2 | 2 | |
2 P | 1A | 1A | 1A | 2A | 2A | 4A | 4A | |
Type | ||||||||
16.8.1a | R | |||||||
16.8.1b | R | |||||||
16.8.1c | R | |||||||
16.8.1d | R | |||||||
16.8.2a | R | |||||||
16.8.2b1 | C | |||||||
16.8.2b2 | C |
magma: CharacterTable(G);