Properties

Label 8T18
Degree $8$
Order $32$
Cyclic no
Abelian no
Solvable yes
Primitive no
$p$-group yes
Group: $C_2^2 \wr C_2$

Related objects

Downloads

Learn more

Show commands: Magma

magma: G := TransitiveGroup(8, 18);
 

Group action invariants

Degree $n$:  $8$
magma: t, n := TransitiveGroupIdentification(G); n;
 
Transitive number $t$:  $18$
magma: t, n := TransitiveGroupIdentification(G); t;
 
Group:  $C_2^2 \wr C_2$
CHM label:   $E(8):E_{4}=[2^{2}]D(4)$
Parity:  $1$
magma: IsEven(G);
 
Primitive:  no
magma: IsPrimitive(G);
 
magma: NilpotencyClass(G);
 
$\card{\Aut(F/K)}$:  $4$
magma: Order(Centralizer(SymmetricGroup(n), G));
 
Generators:  (1,3)(2,8)(4,6)(5,7), (4,5)(6,7), (4,6)(5,7), (1,8)(2,3)(4,5)(6,7), (1,5)(2,6)(3,7)(4,8)
magma: Generators(G);
 

Low degree resolvents

$\card{(G/N)}$Galois groups for stem field(s)
$2$:  $C_2$ x 7
$4$:  $C_2^2$ x 7
$8$:  $D_{4}$ x 6, $C_2^3$
$16$:  $D_4\times C_2$ x 3

Resolvents shown for degrees $\leq 47$

Subfields

Degree 2: $C_2$

Degree 4: $D_{4}$ x 3

Low degree siblings

8T18 x 7, 16T39 x 6, 16T46, 32T24

Siblings are shown with degree $\leq 47$

A number field with this Galois group has no arithmetically equivalent fields.

Conjugacy classes

LabelCycle TypeSizeOrderIndexRepresentative
1A $1^{8}$ $1$ $1$ $0$ $()$
2A $2^{4}$ $1$ $2$ $4$ $(1,2)(3,8)(4,7)(5,6)$
2B $2^{4}$ $1$ $2$ $4$ $(1,3)(2,8)(4,6)(5,7)$
2C $2^{4}$ $1$ $2$ $4$ $(1,8)(2,3)(4,5)(6,7)$
2D $2^{4}$ $2$ $2$ $4$ $(1,3)(2,8)(4,7)(5,6)$
2E $2^{2},1^{4}$ $2$ $2$ $2$ $(4,7)(5,6)$
2F $2^{2},1^{4}$ $2$ $2$ $2$ $(4,5)(6,7)$
2G $2^{4}$ $2$ $2$ $4$ $(1,2)(3,8)(4,5)(6,7)$
2H $2^{4}$ $2$ $2$ $4$ $(1,3)(2,8)(4,5)(6,7)$
2I $2^{2},1^{4}$ $2$ $2$ $2$ $(4,6)(5,7)$
2J $2^{4}$ $4$ $2$ $4$ $(1,7)(2,4)(3,5)(6,8)$
4A $4^{2}$ $4$ $4$ $6$ $(1,7,2,4)(3,5,8,6)$
4B $4^{2}$ $4$ $4$ $6$ $(1,7,3,5)(2,4,8,6)$
4C $4^{2}$ $4$ $4$ $6$ $(1,7,8,6)(2,4,3,5)$

Malle's constant $a(G)$:     $1/2$

magma: ConjugacyClasses(G);
 

Group invariants

Order:  $32=2^{5}$
magma: Order(G);
 
Cyclic:  no
magma: IsCyclic(G);
 
Abelian:  no
magma: IsAbelian(G);
 
Solvable:  yes
magma: IsSolvable(G);
 
Nilpotency class:  $2$
Label:  32.27
magma: IdentifyGroup(G);
 
Character table:

1A 2A 2B 2C 2D 2E 2F 2G 2H 2I 2J 4A 4B 4C
Size 1 1 1 1 2 2 2 2 2 2 4 4 4 4
2 P 1A 1A 1A 1A 1A 1A 1A 1A 1A 1A 1A 2A 2B 2C
Type
32.27.1a R 1 1 1 1 1 1 1 1 1 1 1 1 1 1
32.27.1b R 1 1 1 1 1 1 1 1 1 1 1 1 1 1
32.27.1c R 1 1 1 1 1 1 1 1 1 1 1 1 1 1
32.27.1d R 1 1 1 1 1 1 1 1 1 1 1 1 1 1
32.27.1e R 1 1 1 1 1 1 1 1 1 1 1 1 1 1
32.27.1f R 1 1 1 1 1 1 1 1 1 1 1 1 1 1
32.27.1g R 1 1 1 1 1 1 1 1 1 1 1 1 1 1
32.27.1h R 1 1 1 1 1 1 1 1 1 1 1 1 1 1
32.27.2a R 2 2 2 2 0 0 2 2 0 0 0 0 0 0
32.27.2b R 2 2 2 2 0 0 2 2 0 0 0 0 0 0
32.27.2c R 2 2 2 2 2 0 0 0 2 0 0 0 0 0
32.27.2d R 2 2 2 2 2 0 0 0 2 0 0 0 0 0
32.27.2e R 2 2 2 2 0 2 0 0 0 2 0 0 0 0
32.27.2f R 2 2 2 2 0 2 0 0 0 2 0 0 0 0

magma: CharacterTable(G);