Show commands:
Magma
magma: G := TransitiveGroup(8, 18);
Group action invariants
Degree $n$: | $8$ | magma: t, n := TransitiveGroupIdentification(G); n;
| |
Transitive number $t$: | $18$ | magma: t, n := TransitiveGroupIdentification(G); t;
| |
Group: | $C_2^2 \wr C_2$ | ||
CHM label: | $E(8):E_{4}=[2^{2}]D(4)$ | ||
Parity: | $1$ | magma: IsEven(G);
| |
Primitive: | no | magma: IsPrimitive(G);
| magma: NilpotencyClass(G);
|
$\card{\Aut(F/K)}$: | $4$ | magma: Order(Centralizer(SymmetricGroup(n), G));
| |
Generators: | (1,3)(2,8)(4,6)(5,7), (4,5)(6,7), (4,6)(5,7), (1,8)(2,3)(4,5)(6,7), (1,5)(2,6)(3,7)(4,8) | magma: Generators(G);
|
Low degree resolvents
$\card{(G/N)}$ Galois groups for stem field(s) $2$: $C_2$ x 7 $4$: $C_2^2$ x 7 $8$: $D_{4}$ x 6, $C_2^3$ $16$: $D_4\times C_2$ x 3 Resolvents shown for degrees $\leq 47$
Subfields
Degree 2: $C_2$
Degree 4: $D_{4}$ x 3
Low degree siblings
8T18 x 7, 16T39 x 6, 16T46, 32T24Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy classes
Label | Cycle Type | Size | Order | Index | Representative |
1A | $1^{8}$ | $1$ | $1$ | $0$ | $()$ |
2A | $2^{4}$ | $1$ | $2$ | $4$ | $(1,2)(3,8)(4,7)(5,6)$ |
2B | $2^{4}$ | $1$ | $2$ | $4$ | $(1,3)(2,8)(4,6)(5,7)$ |
2C | $2^{4}$ | $1$ | $2$ | $4$ | $(1,8)(2,3)(4,5)(6,7)$ |
2D | $2^{4}$ | $2$ | $2$ | $4$ | $(1,3)(2,8)(4,7)(5,6)$ |
2E | $2^{2},1^{4}$ | $2$ | $2$ | $2$ | $(4,7)(5,6)$ |
2F | $2^{2},1^{4}$ | $2$ | $2$ | $2$ | $(4,5)(6,7)$ |
2G | $2^{4}$ | $2$ | $2$ | $4$ | $(1,2)(3,8)(4,5)(6,7)$ |
2H | $2^{4}$ | $2$ | $2$ | $4$ | $(1,3)(2,8)(4,5)(6,7)$ |
2I | $2^{2},1^{4}$ | $2$ | $2$ | $2$ | $(4,6)(5,7)$ |
2J | $2^{4}$ | $4$ | $2$ | $4$ | $(1,7)(2,4)(3,5)(6,8)$ |
4A | $4^{2}$ | $4$ | $4$ | $6$ | $(1,7,2,4)(3,5,8,6)$ |
4B | $4^{2}$ | $4$ | $4$ | $6$ | $(1,7,3,5)(2,4,8,6)$ |
4C | $4^{2}$ | $4$ | $4$ | $6$ | $(1,7,8,6)(2,4,3,5)$ |
Malle's constant $a(G)$: $1/2$
magma: ConjugacyClasses(G);
Group invariants
Order: | $32=2^{5}$ | magma: Order(G);
| |
Cyclic: | no | magma: IsCyclic(G);
| |
Abelian: | no | magma: IsAbelian(G);
| |
Solvable: | yes | magma: IsSolvable(G);
| |
Nilpotency class: | $2$ | ||
Label: | 32.27 | magma: IdentifyGroup(G);
| |
Character table: |
1A | 2A | 2B | 2C | 2D | 2E | 2F | 2G | 2H | 2I | 2J | 4A | 4B | 4C | ||
Size | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 4 | 4 | 4 | 4 | |
2 P | 1A | 1A | 1A | 1A | 1A | 1A | 1A | 1A | 1A | 1A | 1A | 2A | 2B | 2C | |
Type | |||||||||||||||
32.27.1a | R | ||||||||||||||
32.27.1b | R | ||||||||||||||
32.27.1c | R | ||||||||||||||
32.27.1d | R | ||||||||||||||
32.27.1e | R | ||||||||||||||
32.27.1f | R | ||||||||||||||
32.27.1g | R | ||||||||||||||
32.27.1h | R | ||||||||||||||
32.27.2a | R | ||||||||||||||
32.27.2b | R | ||||||||||||||
32.27.2c | R | ||||||||||||||
32.27.2d | R | ||||||||||||||
32.27.2e | R | ||||||||||||||
32.27.2f | R |
magma: CharacterTable(G);