Group action invariants
| Degree $n$ : | $8$ | |
| Transitive number $t$ : | $49$ | |
| Group : | $A_8$ | |
| CHM label : | $A8$ | |
| Parity: | $1$ | |
| Primitive: | Yes | |
| Nilpotency class: | $-1$ (not nilpotent) | |
| Generators: | (1,2)(3,4,5,6,7,8), (1,2,3) | |
| $|\Aut(F/K)|$: | $1$ |
Low degree resolvents
NoneResolvents shown for degrees $\leq 47$
Subfields
Degree 2: None
Degree 4: None
Low degree siblings
15T72 x 2, 28T433, 35T36Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy Classes
| Cycle Type | Size | Order | Representative |
| $ 1, 1, 1, 1, 1, 1, 1, 1 $ | $1$ | $1$ | $()$ |
| $ 2, 2, 2, 2 $ | $105$ | $2$ | $(1,6)(2,7)(3,5)(4,8)$ |
| $ 3, 3, 1, 1 $ | $1120$ | $3$ | $(2,5,8)(3,4,7)$ |
| $ 6, 2 $ | $3360$ | $6$ | $(1,6)(2,4,5,7,8,3)$ |
| $ 2, 2, 1, 1, 1, 1 $ | $210$ | $2$ | $( 2, 7)( 3, 5)$ |
| $ 4, 2, 1, 1 $ | $2520$ | $4$ | $( 1, 6)( 2, 3, 7, 5)$ |
| $ 3, 1, 1, 1, 1, 1 $ | $112$ | $3$ | $(1,4,6)$ |
| $ 3, 2, 2, 1 $ | $1680$ | $6$ | $(1,6,4)(2,7)(3,5)$ |
| $ 7, 1 $ | $2880$ | $7$ | $(1,3,8,2,4,7,5)$ |
| $ 7, 1 $ | $2880$ | $7$ | $(1,5,7,4,2,8,3)$ |
| $ 5, 1, 1, 1 $ | $1344$ | $5$ | $(1,5,4,6,7)$ |
| $ 5, 3 $ | $1344$ | $15$ | $(1,4,7,5,6)(2,3,8)$ |
| $ 5, 3 $ | $1344$ | $15$ | $(1,4,7,5,6)(2,8,3)$ |
| $ 4, 4 $ | $1260$ | $4$ | $(1,6,8,5)(2,4,3,7)$ |
Group invariants
| Order: | $20160=2^{6} \cdot 3^{2} \cdot 5 \cdot 7$ | |
| Cyclic: | No | |
| Abelian: | No | |
| Solvable: | No | |
| GAP id: | Data not available |
| Character table: |
2 6 . . 5 3 6 1 1 2 2 . 4 . .
3 2 . . 1 . 1 2 1 2 1 1 . 1 1
5 1 . . . . . . . 1 . 1 . 1 1
7 1 1 1 . . . . . . . . . . .
1a 7a 7b 2a 4a 2b 3a 6a 3b 6b 5a 4b 15a 15b
2P 1a 7a 7b 1a 2a 1a 3a 3a 3b 3b 5a 2b 15a 15b
3P 1a 7b 7a 2a 4a 2b 1a 2b 1a 2a 5a 4b 5a 5a
5P 1a 7b 7a 2a 4a 2b 3a 6a 3b 6b 1a 4b 3b 3b
7P 1a 1a 1a 2a 4a 2b 3a 6a 3b 6b 5a 4b 15b 15a
11P 1a 7a 7b 2a 4a 2b 3a 6a 3b 6b 5a 4b 15b 15a
13P 1a 7b 7a 2a 4a 2b 3a 6a 3b 6b 5a 4b 15b 15a
X.1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
X.2 7 . . 3 1 -1 1 -1 4 . 2 -1 -1 -1
X.3 14 . . 2 . 6 2 . -1 -1 -1 2 -1 -1
X.4 20 -1 -1 4 . 4 -1 1 5 1 . . . .
X.5 21 . . 1 -1 -3 . . 6 -2 1 1 1 1
X.6 21 . . 1 -1 -3 . . -3 1 1 1 B /B
X.7 21 . . 1 -1 -3 . . -3 1 1 1 /B B
X.8 28 . . 4 . -4 1 -1 1 1 -2 . 1 1
X.9 35 . . -5 -1 3 2 . 5 1 . -1 . .
X.10 45 A /A -3 1 -3 . . . . . 1 . .
X.11 45 /A A -3 1 -3 . . . . . 1 . .
X.12 56 . . . . 8 -1 -1 -4 . 1 . 1 1
X.13 64 1 1 . . . -2 . 4 . -1 . -1 -1
X.14 70 . . 2 . -2 1 1 -5 -1 . -2 . .
A = E(7)^3+E(7)^5+E(7)^6
= (-1-Sqrt(-7))/2 = -1-b7
B = -E(15)-E(15)^2-E(15)^4-E(15)^8
= (-1-Sqrt(-15))/2 = -1-b15
|