Show commands: Magma
Group invariants
Abstract group: | $A_8$ |
| |
Order: | $20160=2^{6} \cdot 3^{2} \cdot 5 \cdot 7$ |
| |
Cyclic: | no |
| |
Abelian: | no |
| |
Solvable: | no |
| |
Nilpotency class: | not nilpotent |
|
Group action invariants
Degree $n$: | $8$ |
| |
Transitive number $t$: | $49$ |
| |
CHM label: | $A8$ | ||
Parity: | $1$ |
| |
Primitive: | yes |
| |
$\card{\Aut(F/K)}$: | $1$ |
| |
Generators: | $(1,2)(3,4,5,6,7,8)$, $(1,2,3)$ |
|
Low degree resolvents
noneResolvents shown for degrees $\leq 47$
Subfields
Degree 2: None
Degree 4: None
Low degree siblings
15T72 x 2, 28T433, 35T36Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy classes
Label | Cycle Type | Size | Order | Index | Representative |
1A | $1^{8}$ | $1$ | $1$ | $0$ | $()$ |
2A | $2^{4}$ | $105$ | $2$ | $4$ | $(1,8)(2,5)(3,4)(6,7)$ |
2B | $2^{2},1^{4}$ | $210$ | $2$ | $2$ | $(2,4)(6,7)$ |
3A | $3,1^{5}$ | $112$ | $3$ | $2$ | $(2,3,4)$ |
3B | $3^{2},1^{2}$ | $1120$ | $3$ | $4$ | $(1,6,3)(4,8,7)$ |
4A | $4^{2}$ | $1260$ | $4$ | $6$ | $(1,7,3,2)(4,8,6,5)$ |
4B | $4,2,1^{2}$ | $2520$ | $4$ | $4$ | $(2,6,4,7)(3,5)$ |
5A | $5,1^{3}$ | $1344$ | $5$ | $4$ | $(1,8,7,6,5)$ |
6A | $3,2^{2},1$ | $1680$ | $6$ | $4$ | $(1,6)(3,4,7)(5,8)$ |
6B | $6,2$ | $3360$ | $6$ | $6$ | $(1,4,6,8,3,7)(2,5)$ |
7A1 | $7,1$ | $2880$ | $7$ | $6$ | $(1,8,6,7,5,2,4)$ |
7A-1 | $7,1$ | $2880$ | $7$ | $6$ | $(1,4,2,5,7,6,8)$ |
15A1 | $5,3$ | $1344$ | $15$ | $6$ | $(1,7,5,8,6)(2,4,3)$ |
15A-1 | $5,3$ | $1344$ | $15$ | $6$ | $(1,6,8,5,7)(2,3,4)$ |
Malle's constant $a(G)$: $1/2$
Character table
1A | 2A | 2B | 3A | 3B | 4A | 4B | 5A | 6A | 6B | 7A1 | 7A-1 | 15A1 | 15A-1 | ||
Size | 1 | 105 | 210 | 112 | 1120 | 1260 | 2520 | 1344 | 1680 | 3360 | 2880 | 2880 | 1344 | 1344 | |
2 P | 1A | 1A | 1A | 3A | 3B | 2A | 2B | 5A | 3A | 3B | 7A1 | 7A-1 | 15A1 | 15A-1 | |
3 P | 1A | 2A | 2B | 1A | 1A | 4A | 4B | 5A | 2B | 2A | 7A-1 | 7A1 | 5A | 5A | |
5 P | 1A | 2A | 2B | 3A | 3B | 4A | 4B | 1A | 6A | 6B | 7A-1 | 7A1 | 3A | 3A | |
7 P | 1A | 2A | 2B | 3A | 3B | 4A | 4B | 5A | 6A | 6B | 1A | 1A | 15A-1 | 15A1 | |
Type | |||||||||||||||
20160.a.1a | R | ||||||||||||||
20160.a.7a | R | ||||||||||||||
20160.a.14a | R | ||||||||||||||
20160.a.20a | R | ||||||||||||||
20160.a.21a | R | ||||||||||||||
20160.a.21b1 | C | ||||||||||||||
20160.a.21b2 | C | ||||||||||||||
20160.a.28a | R | ||||||||||||||
20160.a.35a | R | ||||||||||||||
20160.a.45a1 | C | ||||||||||||||
20160.a.45a2 | C | ||||||||||||||
20160.a.56a | R | ||||||||||||||
20160.a.64a | R | ||||||||||||||
20160.a.70a | R |
Regular extensions
$f_{ 1 } =$ |
$7 x^{8} + 8 x^{7} + \left(7 t^{2} + 1\right)$
|