Show commands:
Magma
magma: G := TransitiveGroup(8, 49);
Group action invariants
Degree $n$: | $8$ | magma: t, n := TransitiveGroupIdentification(G); n;
| |
Transitive number $t$: | $49$ | magma: t, n := TransitiveGroupIdentification(G); t;
| |
Group: | $A_8$ | ||
CHM label: | $A8$ | ||
Parity: | $1$ | magma: IsEven(G);
| |
Primitive: | yes | magma: IsPrimitive(G);
| |
Nilpotency class: | $-1$ (not nilpotent) | magma: NilpotencyClass(G);
| |
$\card{\Aut(F/K)}$: | $1$ | magma: Order(Centralizer(SymmetricGroup(n), G));
| |
Generators: | (1,2)(3,4,5,6,7,8), (1,2,3) | magma: Generators(G);
|
Low degree resolvents
noneResolvents shown for degrees $\leq 47$
Subfields
Degree 2: None
Degree 4: None
Low degree siblings
15T72 x 2, 28T433, 35T36Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy classes
Cycle Type | Size | Order | Representative |
$ 1, 1, 1, 1, 1, 1, 1, 1 $ | $1$ | $1$ | $()$ |
$ 2, 2, 2, 2 $ | $105$ | $2$ | $(1,3)(2,6)(4,5)(7,8)$ |
$ 3, 3, 1, 1 $ | $1120$ | $3$ | $(1,6,5)(2,4,3)$ |
$ 6, 2 $ | $3360$ | $6$ | $(1,4,6,3,5,2)(7,8)$ |
$ 2, 2, 1, 1, 1, 1 $ | $210$ | $2$ | $(4,6)(5,7)$ |
$ 4, 2, 1, 1 $ | $2520$ | $4$ | $(1,2)(4,5,6,7)$ |
$ 4, 4 $ | $1260$ | $4$ | $(1,3,2,8)(4,7,6,5)$ |
$ 7, 1 $ | $2880$ | $7$ | $(1,7,4,5,6,8,2)$ |
$ 7, 1 $ | $2880$ | $7$ | $(1,2,8,6,5,4,7)$ |
$ 3, 1, 1, 1, 1, 1 $ | $112$ | $3$ | $(1,7,2)$ |
$ 3, 2, 2, 1 $ | $1680$ | $6$ | $(1,2,7)(3,5)(4,6)$ |
$ 5, 1, 1, 1 $ | $1344$ | $5$ | $(1,5,8,2,4)$ |
$ 5, 3 $ | $1344$ | $15$ | $(1,8,4,5,2)(3,7,6)$ |
$ 5, 3 $ | $1344$ | $15$ | $(1,8,4,5,2)(3,6,7)$ |
magma: ConjugacyClasses(G);
Group invariants
Order: | $20160=2^{6} \cdot 3^{2} \cdot 5 \cdot 7$ | magma: Order(G);
| |
Cyclic: | no | magma: IsCyclic(G);
| |
Abelian: | no | magma: IsAbelian(G);
| |
Solvable: | no | magma: IsSolvable(G);
| |
Label: | 20160.a | magma: IdentifyGroup(G);
|
Character table: |
2 6 2 . . . . . 6 1 1 5 2 3 4 3 2 2 1 1 1 . . 1 2 1 1 1 . . 5 1 1 1 1 1 . . . . . . . . . 7 1 . . . . 1 1 . . . . . . . 1a 3a 5a 15a 15b 7a 7b 2a 3b 6a 2b 6b 4a 4b 2P 1a 3a 5a 15a 15b 7a 7b 1a 3b 3b 1a 3a 2b 2a 3P 1a 1a 5a 5a 5a 7b 7a 2a 1a 2a 2b 2b 4a 4b 5P 1a 3a 1a 3a 3a 7b 7a 2a 3b 6a 2b 6b 4a 4b 7P 1a 3a 5a 15b 15a 1a 1a 2a 3b 6a 2b 6b 4a 4b 11P 1a 3a 5a 15b 15a 7a 7b 2a 3b 6a 2b 6b 4a 4b 13P 1a 3a 5a 15b 15a 7b 7a 2a 3b 6a 2b 6b 4a 4b X.1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 X.2 7 4 2 -1 -1 . . -1 1 -1 3 . 1 -1 X.3 14 -1 -1 -1 -1 . . 6 2 . 2 -1 . 2 X.4 20 5 . . . -1 -1 4 -1 1 4 1 . . X.5 21 6 1 1 1 . . -3 . . 1 -2 -1 1 X.6 21 -3 1 A /A . . -3 . . 1 1 -1 1 X.7 21 -3 1 /A A . . -3 . . 1 1 -1 1 X.8 28 1 -2 1 1 . . -4 1 -1 4 1 . . X.9 35 5 . . . . . 3 2 . -5 1 -1 -1 X.10 45 . . . . B /B -3 . . -3 . 1 1 X.11 45 . . . . /B B -3 . . -3 . 1 1 X.12 56 -4 1 1 1 . . 8 -1 -1 . . . . X.13 64 4 -1 -1 -1 1 1 . -2 . . . . . X.14 70 -5 . . . . . -2 1 1 2 -1 . -2 A = -E(15)-E(15)^2-E(15)^4-E(15)^8 = (-1-Sqrt(-15))/2 = -1-b15 B = E(7)^3+E(7)^5+E(7)^6 = (-1-Sqrt(-7))/2 = -1-b7 |
magma: CharacterTable(G);