Group action invariants
| Degree $n$ : | $8$ | |
| Transitive number $t$ : | $32$ | |
| Group : | $((C_2 \times D_4): C_2):C_3$ | |
| CHM label : | $[2^{3}]A(4)$ | |
| Parity: | $1$ | |
| Primitive: | No | |
| Nilpotency class: | $-1$ (not nilpotent) | |
| Generators: | (1,3)(2,8)(4,6)(5,7), (2,5)(3,4), (1,8)(2,3)(4,5)(6,7), (1,2,3)(4,6,5), (1,5)(2,6)(3,7)(4,8) | |
| $|\Aut(F/K)|$: | $2$ |
Low degree resolvents
|G/N| Galois groups for stem field(s) 3: $C_3$ 12: $A_4$ x 5 48: $C_2^4:C_3$ Resolvents shown for degrees $\leq 47$
Subfields
Degree 2: None
Degree 4: $A_4$
Low degree siblings
8T32 x 2, 24T97 x 3, 24T149, 32T420Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy Classes
| Cycle Type | Size | Order | Representative |
| $ 1, 1, 1, 1, 1, 1, 1, 1 $ | $1$ | $1$ | $()$ |
| $ 2, 2, 1, 1, 1, 1 $ | $6$ | $2$ | $(3,4)(7,8)$ |
| $ 3, 3, 1, 1 $ | $16$ | $3$ | $(2,3,7)(4,8,5)$ |
| $ 3, 3, 1, 1 $ | $16$ | $3$ | $(2,7,3)(4,5,8)$ |
| $ 2, 2, 2, 2 $ | $6$ | $2$ | $(1,2)(3,7)(4,8)(5,6)$ |
| $ 2, 2, 2, 2 $ | $6$ | $2$ | $(1,2)(3,8)(4,7)(5,6)$ |
| $ 6, 2 $ | $16$ | $6$ | $(1,2,3,6,5,4)(7,8)$ |
| $ 4, 4 $ | $6$ | $4$ | $(1,2,6,5)(3,7,4,8)$ |
| $ 4, 4 $ | $6$ | $4$ | $(1,2,6,5)(3,8,4,7)$ |
| $ 6, 2 $ | $16$ | $6$ | $(1,2,7,6,5,8)(3,4)$ |
| $ 2, 2, 2, 2 $ | $1$ | $2$ | $(1,6)(2,5)(3,4)(7,8)$ |
Group invariants
| Order: | $96=2^{5} \cdot 3$ | |
| Cyclic: | No | |
| Abelian: | No | |
| Solvable: | Yes | |
| GAP id: | [96, 204] |
| Character table: |
2 5 4 1 1 4 4 1 4 4 1 5
3 1 . 1 1 . . 1 . . 1 1
1a 2a 3a 3b 2b 2c 6a 4a 4b 6b 2d
2P 1a 1a 3b 3a 1a 1a 3a 2d 2d 3b 1a
3P 1a 2a 1a 1a 2b 2c 2d 4a 4b 2d 2d
5P 1a 2a 3b 3a 2b 2c 6b 4a 4b 6a 2d
X.1 1 1 1 1 1 1 1 1 1 1 1
X.2 1 1 A /A 1 1 /A 1 1 A 1
X.3 1 1 /A A 1 1 A 1 1 /A 1
X.4 3 3 . . -1 -1 . -1 -1 . 3
X.5 3 -1 . . 3 -1 . -1 -1 . 3
X.6 3 -1 . . -1 3 . -1 -1 . 3
X.7 3 -1 . . -1 -1 . -1 3 . 3
X.8 3 -1 . . -1 -1 . 3 -1 . 3
X.9 4 . 1 1 . . -1 . . -1 -4
X.10 4 . A /A . . -/A . . -A -4
X.11 4 . /A A . . -A . . -/A -4
A = E(3)^2
= (-1-Sqrt(-3))/2 = -1-b3
|