Show commands: Magma
Group invariants
Abstract group: | $C_2^3:(C_7: C_3)$ |
| |
Order: | $168=2^{3} \cdot 3 \cdot 7$ |
| |
Cyclic: | no |
| |
Abelian: | no |
| |
Solvable: | yes |
| |
Nilpotency class: | not nilpotent |
|
Group action invariants
Degree $n$: | $8$ |
| |
Transitive number $t$: | $36$ |
| |
CHM label: | $E(8):F_{21}$ | ||
Parity: | $1$ |
| |
Primitive: | yes |
| |
$\card{\Aut(F/K)}$: | $1$ |
| |
Generators: | $(1,3)(2,8)(4,6)(5,7)$, $(1,2,6,3,4,5,7)$, $(1,8)(2,3)(4,5)(6,7)$, $(1,2,3)(4,6,5)$, $(1,5)(2,6)(3,7)(4,8)$ |
|
Low degree resolvents
$\card{(G/N)}$ Galois groups for stem field(s) $3$: $C_3$ $21$: $C_7:C_3$ Resolvents shown for degrees $\leq 47$
Subfields
Degree 2: None
Degree 4: None
Low degree siblings
14T11, 24T283, 28T27, 42T26Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy classes
Label | Cycle Type | Size | Order | Index | Representative |
1A | $1^{8}$ | $1$ | $1$ | $0$ | $()$ |
2A | $2^{4}$ | $7$ | $2$ | $4$ | $(1,8)(2,3)(4,5)(6,7)$ |
3A1 | $3^{2},1^{2}$ | $28$ | $3$ | $4$ | $(2,6,4)(3,7,5)$ |
3A-1 | $3^{2},1^{2}$ | $28$ | $3$ | $4$ | $(2,4,6)(3,5,7)$ |
6A1 | $6,2$ | $28$ | $6$ | $6$ | $(1,8)(2,5,6,3,4,7)$ |
6A-1 | $6,2$ | $28$ | $6$ | $6$ | $(1,8)(2,7,4,3,6,5)$ |
7A1 | $7,1$ | $24$ | $7$ | $6$ | $(1,8,3,4,2,7,5)$ |
7A-1 | $7,1$ | $24$ | $7$ | $6$ | $(1,5,7,2,4,3,8)$ |
Malle's constant $a(G)$: $1/4$
Character table
1A | 2A | 3A1 | 3A-1 | 6A1 | 6A-1 | 7A1 | 7A-1 | ||
Size | 1 | 7 | 28 | 28 | 28 | 28 | 24 | 24 | |
2 P | 1A | 1A | 3A-1 | 3A1 | 3A1 | 3A-1 | 7A1 | 7A-1 | |
3 P | 1A | 2A | 1A | 1A | 2A | 2A | 7A-1 | 7A1 | |
7 P | 1A | 2A | 3A1 | 3A-1 | 6A1 | 6A-1 | 1A | 1A | |
Type | |||||||||
168.43.1a | R | ||||||||
168.43.1b1 | C | ||||||||
168.43.1b2 | C | ||||||||
168.43.3a1 | C | ||||||||
168.43.3a2 | C | ||||||||
168.43.7a | R | ||||||||
168.43.7b1 | C | ||||||||
168.43.7b2 | C |
Regular extensions
$f_{ 1 } =$ |
$9 x^{8} + 9 t x^{7} + \left(9 t^{2} + 108\right) x^{6} + \left(9 t^{3} + 108 t + 72\right) x^{5} + \left(9 t^{4} + 108 t^{2} + 72 t + 486\right) x^{4} + \left(9 t^{5} + 108 t^{3} + 72 t^{2} + 486 t + 504\right) x^{3} + \left(9 t^{6} + 108 t^{4} + 72 t^{3} + 486 t^{2} + 504 t + 1228\right) x^{2} + \left(9 t^{7} + 108 t^{5} + 72 t^{4} + 486 t^{3} + 504 t^{2} + 1228 t + 888\right) x + \left(9 t^{8} + 108 t^{6} + 72 t^{5} + 486 t^{4} + 504 t^{3} + 1228 t^{2} + 888 t + 1369\right)$
|