Properties

Label 8T36
8T36 1 2 1->2 1->2 3 1->3 5 1->5 8 1->8 2->3 2->3 6 2->6 2->6 2->8 3->1 4 3->4 7 3->7 4->5 4->5 4->6 4->6 4->8 5->4 5->7 5->7 6->3 6->5 6->7 7->1
Degree $8$
Order $168$
Cyclic no
Abelian no
Solvable yes
Primitive yes
$p$-group no
Group: $C_2^3:(C_7: C_3)$

Related objects

Downloads

Learn more

Show commands: Magma

Copy content magma:G := TransitiveGroup(8, 36);
 

Group invariants

Abstract group:  $C_2^3:(C_7: C_3)$
Copy content magma:IdentifyGroup(G);
 
Order:  $168=2^{3} \cdot 3 \cdot 7$
Copy content magma:Order(G);
 
Cyclic:  no
Copy content magma:IsCyclic(G);
 
Abelian:  no
Copy content magma:IsAbelian(G);
 
Solvable:  yes
Copy content magma:IsSolvable(G);
 
Nilpotency class:   not nilpotent
Copy content magma:NilpotencyClass(G);
 

Group action invariants

Degree $n$:  $8$
Copy content magma:t, n := TransitiveGroupIdentification(G); n;
 
Transitive number $t$:  $36$
Copy content magma:t, n := TransitiveGroupIdentification(G); t;
 
CHM label:   $E(8):F_{21}$
Parity:  $1$
Copy content magma:IsEven(G);
 
Primitive:  yes
Copy content magma:IsPrimitive(G);
 
$\card{\Aut(F/K)}$:  $1$
Copy content magma:Order(Centralizer(SymmetricGroup(n), G));
 
Generators:  $(1,3)(2,8)(4,6)(5,7)$, $(1,2,6,3,4,5,7)$, $(1,8)(2,3)(4,5)(6,7)$, $(1,2,3)(4,6,5)$, $(1,5)(2,6)(3,7)(4,8)$
Copy content magma:Generators(G);
 

Low degree resolvents

$\card{(G/N)}$Galois groups for stem field(s)
$3$:  $C_3$
$21$:  $C_7:C_3$

Resolvents shown for degrees $\leq 47$

Subfields

Degree 2: None

Degree 4: None

Low degree siblings

14T11, 24T283, 28T27, 42T26

Siblings are shown with degree $\leq 47$

A number field with this Galois group has no arithmetically equivalent fields.

Conjugacy classes

LabelCycle TypeSizeOrderIndexRepresentative
1A $1^{8}$ $1$ $1$ $0$ $()$
2A $2^{4}$ $7$ $2$ $4$ $(1,8)(2,3)(4,5)(6,7)$
3A1 $3^{2},1^{2}$ $28$ $3$ $4$ $(2,6,4)(3,7,5)$
3A-1 $3^{2},1^{2}$ $28$ $3$ $4$ $(2,4,6)(3,5,7)$
6A1 $6,2$ $28$ $6$ $6$ $(1,8)(2,5,6,3,4,7)$
6A-1 $6,2$ $28$ $6$ $6$ $(1,8)(2,7,4,3,6,5)$
7A1 $7,1$ $24$ $7$ $6$ $(1,8,3,4,2,7,5)$
7A-1 $7,1$ $24$ $7$ $6$ $(1,5,7,2,4,3,8)$

Malle's constant $a(G)$:     $1/4$

Copy content magma:ConjugacyClasses(G);
 

Character table

1A 2A 3A1 3A-1 6A1 6A-1 7A1 7A-1
Size 1 7 28 28 28 28 24 24
2 P 1A 1A 3A-1 3A1 3A1 3A-1 7A1 7A-1
3 P 1A 2A 1A 1A 2A 2A 7A-1 7A1
7 P 1A 2A 3A1 3A-1 6A1 6A-1 1A 1A
Type
168.43.1a R 1 1 1 1 1 1 1 1
168.43.1b1 C 1 1 ζ31 ζ3 ζ3 ζ31 1 1
168.43.1b2 C 1 1 ζ3 ζ31 ζ31 ζ3 1 1
168.43.3a1 C 3 3 0 0 0 0 ζ731ζ7ζ72 ζ73+ζ7+ζ72
168.43.3a2 C 3 3 0 0 0 0 ζ73+ζ7+ζ72 ζ731ζ7ζ72
168.43.7a R 7 1 1 1 1 1 0 0
168.43.7b1 C 7 1 ζ31 ζ3 ζ3 ζ31 0 0
168.43.7b2 C 7 1 ζ3 ζ31 ζ31 ζ3 0 0

Copy content magma:CharacterTable(G);
 

Regular extensions

$f_{ 1 } =$ $9 x^{8} + 9 t x^{7} + \left(9 t^{2} + 108\right) x^{6} + \left(9 t^{3} + 108 t + 72\right) x^{5} + \left(9 t^{4} + 108 t^{2} + 72 t + 486\right) x^{4} + \left(9 t^{5} + 108 t^{3} + 72 t^{2} + 486 t + 504\right) x^{3} + \left(9 t^{6} + 108 t^{4} + 72 t^{3} + 486 t^{2} + 504 t + 1228\right) x^{2} + \left(9 t^{7} + 108 t^{5} + 72 t^{4} + 486 t^{3} + 504 t^{2} + 1228 t + 888\right) x + \left(9 t^{8} + 108 t^{6} + 72 t^{5} + 486 t^{4} + 504 t^{3} + 1228 t^{2} + 888 t + 1369\right)$ Copy content Toggle raw display