Group action invariants
| Degree $n$ : | $8$ | |
| Transitive number $t$ : | $36$ | |
| Group : | $C_2^3:(C_7: C_3)$ | |
| CHM label : | $E(8):F_{21}$ | |
| Parity: | $1$ | |
| Primitive: | Yes | |
| Nilpotency class: | $-1$ (not nilpotent) | |
| Generators: | (1,3)(2,8)(4,6)(5,7), (1,2,6,3,4,5,7), (1,8)(2,3)(4,5)(6,7), (1,2,3)(4,6,5), (1,5)(2,6)(3,7)(4,8) | |
| $|\Aut(F/K)|$: | $1$ |
Low degree resolvents
|G/N| Galois groups for stem field(s) 3: $C_3$ 21: $C_7:C_3$ Resolvents shown for degrees $\leq 47$
Subfields
Degree 2: None
Degree 4: None
Low degree siblings
14T11, 24T283, 28T27, 42T26Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy Classes
| Cycle Type | Size | Order | Representative |
| $ 1, 1, 1, 1, 1, 1, 1, 1 $ | $1$ | $1$ | $()$ |
| $ 3, 3, 1, 1 $ | $28$ | $3$ | $(3,6,7)(4,8,5)$ |
| $ 3, 3, 1, 1 $ | $28$ | $3$ | $(3,7,6)(4,5,8)$ |
| $ 7, 1 $ | $24$ | $7$ | $(2,3,6,5,7,8,4)$ |
| $ 7, 1 $ | $24$ | $7$ | $(2,4,8,7,5,6,3)$ |
| $ 6, 2 $ | $28$ | $6$ | $(1,2)(3,4,6,8,7,5)$ |
| $ 6, 2 $ | $28$ | $6$ | $(1,2)(3,5,7,8,6,4)$ |
| $ 2, 2, 2, 2 $ | $7$ | $2$ | $(1,2)(3,8)(4,7)(5,6)$ |
Group invariants
| Order: | $168=2^{3} \cdot 3 \cdot 7$ | |
| Cyclic: | No | |
| Abelian: | No | |
| Solvable: | Yes | |
| GAP id: | [168, 43] |
| Character table: |
2 3 1 1 . . 1 1 3
3 1 1 1 . . 1 1 1
7 1 . . 1 1 . . .
1a 3a 3b 7a 7b 6a 6b 2a
2P 1a 3b 3a 7a 7b 3a 3b 1a
3P 1a 1a 1a 7b 7a 2a 2a 2a
5P 1a 3b 3a 7b 7a 6b 6a 2a
7P 1a 3a 3b 1a 1a 6a 6b 2a
X.1 1 1 1 1 1 1 1 1
X.2 1 A /A 1 1 /A A 1
X.3 1 /A A 1 1 A /A 1
X.4 3 . . B /B . . 3
X.5 3 . . /B B . . 3
X.6 7 1 1 . . -1 -1 -1
X.7 7 A /A . . -/A -A -1
X.8 7 /A A . . -A -/A -1
A = E(3)^2
= (-1-Sqrt(-3))/2 = -1-b3
B = E(7)^3+E(7)^5+E(7)^6
= (-1-Sqrt(-7))/2 = -1-b7
|