Show commands:
Magma
magma: G := TransitiveGroup(8, 12);
Group action invariants
Degree $n$: | $8$ | magma: t, n := TransitiveGroupIdentification(G); n;
| |
Transitive number $t$: | $12$ | magma: t, n := TransitiveGroupIdentification(G); t;
| |
Group: | $\SL(2,3)$ | ||
CHM label: | $2A_{4}(8)=[2]A(4)=SL(2,3)$ | ||
Parity: | $1$ | magma: IsEven(G);
| |
Primitive: | no | magma: IsPrimitive(G);
| magma: NilpotencyClass(G);
|
$\card{\Aut(F/K)}$: | $2$ | magma: Order(Centralizer(SymmetricGroup(n), G));
| |
Generators: | (1,3,5,7)(2,4,6,8), (1,3,8)(4,5,7) | magma: Generators(G);
|
Low degree resolvents
$\card{(G/N)}$ Galois groups for stem field(s) $3$: $C_3$ $12$: $A_4$ Resolvents shown for degrees $\leq 47$
Subfields
Degree 2: None
Degree 4: $A_4$
Low degree siblings
24T7Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy classes
Label | Cycle Type | Size | Order | Index | Representative |
1A | $1^{8}$ | $1$ | $1$ | $0$ | $()$ |
2A | $2^{4}$ | $1$ | $2$ | $4$ | $(1,5)(2,6)(3,7)(4,8)$ |
3A1 | $3^{2},1^{2}$ | $4$ | $3$ | $4$ | $(1,4,2)(5,8,6)$ |
3A-1 | $3^{2},1^{2}$ | $4$ | $3$ | $4$ | $(1,2,4)(5,6,8)$ |
4A | $4^{2}$ | $6$ | $4$ | $6$ | $(1,7,5,3)(2,8,6,4)$ |
6A1 | $6,2$ | $4$ | $6$ | $6$ | $(1,5)(2,3,8,6,7,4)$ |
6A-1 | $6,2$ | $4$ | $6$ | $6$ | $(1,5)(2,4,7,6,8,3)$ |
Malle's constant $a(G)$: $1/4$
magma: ConjugacyClasses(G);
Group invariants
Order: | $24=2^{3} \cdot 3$ | magma: Order(G);
| |
Cyclic: | no | magma: IsCyclic(G);
| |
Abelian: | no | magma: IsAbelian(G);
| |
Solvable: | yes | magma: IsSolvable(G);
| |
Nilpotency class: | not nilpotent | ||
Label: | 24.3 | magma: IdentifyGroup(G);
| |
Character table: |
1A | 2A | 3A1 | 3A-1 | 4A | 6A1 | 6A-1 | ||
Size | 1 | 1 | 4 | 4 | 6 | 4 | 4 | |
2 P | 1A | 1A | 3A-1 | 3A1 | 2A | 3A1 | 3A-1 | |
3 P | 1A | 2A | 1A | 1A | 4A | 2A | 2A | |
Type | ||||||||
24.3.1a | R | |||||||
24.3.1b1 | C | |||||||
24.3.1b2 | C | |||||||
24.3.2a | S | |||||||
24.3.2b1 | C | |||||||
24.3.2b2 | C | |||||||
24.3.3a | R |
magma: CharacterTable(G);