Group action invariants
| Degree $n$ : | $8$ | |
| Transitive number $t$ : | $12$ | |
| Group : | $\SL(2,3)$ | |
| CHM label : | $2A_{4}(8)=[2]A(4)=SL(2,3)$ | |
| Parity: | $1$ | |
| Primitive: | No | |
| Nilpotency class: | $-1$ (not nilpotent) | |
| Generators: | (1,3,5,7)(2,4,6,8), (1,3,8)(4,5,7) | |
| $|\Aut(F/K)|$: | $2$ |
Low degree resolvents
|G/N| Galois groups for stem field(s) 3: $C_3$ 12: $A_4$ Resolvents shown for degrees $\leq 47$
Subfields
Degree 2: None
Degree 4: $A_4$
Low degree siblings
24T7Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy Classes
| Cycle Type | Size | Order | Representative |
| $ 1, 1, 1, 1, 1, 1, 1, 1 $ | $1$ | $1$ | $()$ |
| $ 3, 3, 1, 1 $ | $4$ | $3$ | $(2,7,8)(3,4,6)$ |
| $ 3, 3, 1, 1 $ | $4$ | $3$ | $(2,8,7)(3,6,4)$ |
| $ 4, 4 $ | $6$ | $4$ | $(1,2,5,6)(3,8,7,4)$ |
| $ 6, 2 $ | $4$ | $6$ | $(1,2,7,5,6,3)(4,8)$ |
| $ 6, 2 $ | $4$ | $6$ | $(1,3,6,5,7,2)(4,8)$ |
| $ 2, 2, 2, 2 $ | $1$ | $2$ | $(1,5)(2,6)(3,7)(4,8)$ |
Group invariants
| Order: | $24=2^{3} \cdot 3$ | |
| Cyclic: | No | |
| Abelian: | No | |
| Solvable: | Yes | |
| GAP id: | [24, 3] |
| Character table: |
2 3 1 1 2 1 1 3
3 1 1 1 . 1 1 1
1a 3a 3b 4a 6a 6b 2a
2P 1a 3b 3a 2a 3a 3b 1a
3P 1a 1a 1a 4a 2a 2a 2a
5P 1a 3b 3a 4a 6b 6a 2a
X.1 1 1 1 1 1 1 1
X.2 1 A /A 1 /A A 1
X.3 1 /A A 1 A /A 1
X.4 2 -1 -1 . 1 1 -2
X.5 2 -/A -A . A /A -2
X.6 2 -A -/A . /A A -2
X.7 3 . . -1 . . 3
A = E(3)^2
= (-1-Sqrt(-3))/2 = -1-b3
|