Properties

Label 8T12
8T12 1 3 1->3 1->3 2 4 2->4 5 3->5 8 3->8 4->5 6 4->6 7 5->7 5->7 6->8 7->1 7->4 8->1 8->2
Degree $8$
Order $24$
Cyclic no
Abelian no
Solvable yes
Primitive no
$p$-group no
Group: $\SL(2,3)$

Related objects

Downloads

Learn more

Show commands: Magma

Copy content magma:G := TransitiveGroup(8, 12);
 

Group invariants

Abstract group:  $\SL(2,3)$
Copy content magma:IdentifyGroup(G);
 
Order:  $24=2^{3} \cdot 3$
Copy content magma:Order(G);
 
Cyclic:  no
Copy content magma:IsCyclic(G);
 
Abelian:  no
Copy content magma:IsAbelian(G);
 
Solvable:  yes
Copy content magma:IsSolvable(G);
 
Nilpotency class:   not nilpotent
Copy content magma:NilpotencyClass(G);
 

Group action invariants

Degree $n$:  $8$
Copy content magma:t, n := TransitiveGroupIdentification(G); n;
 
Transitive number $t$:  $12$
Copy content magma:t, n := TransitiveGroupIdentification(G); t;
 
CHM label:   $2A_{4}(8)=[2]A(4)=SL(2,3)$
Parity:  $1$
Copy content magma:IsEven(G);
 
Primitive:  no
Copy content magma:IsPrimitive(G);
 
$\card{\Aut(F/K)}$:  $2$
Copy content magma:Order(Centralizer(SymmetricGroup(n), G));
 
Generators:  $(1,3,5,7)(2,4,6,8)$, $(1,3,8)(4,5,7)$
Copy content magma:Generators(G);
 

Low degree resolvents

$\card{(G/N)}$Galois groups for stem field(s)
$3$:  $C_3$
$12$:  $A_4$

Resolvents shown for degrees $\leq 47$

Subfields

Degree 2: None

Degree 4: $A_4$

Low degree siblings

24T7

Siblings are shown with degree $\leq 47$

A number field with this Galois group has no arithmetically equivalent fields.

Conjugacy classes

LabelCycle TypeSizeOrderIndexRepresentative
1A $1^{8}$ $1$ $1$ $0$ $()$
2A $2^{4}$ $1$ $2$ $4$ $(1,5)(2,6)(3,7)(4,8)$
3A1 $3^{2},1^{2}$ $4$ $3$ $4$ $(2,8,7)(3,6,4)$
3A-1 $3^{2},1^{2}$ $4$ $3$ $4$ $(2,7,8)(3,4,6)$
4A $4^{2}$ $6$ $4$ $6$ $(1,7,5,3)(2,8,6,4)$
6A1 $6,2$ $4$ $6$ $6$ $(1,5)(2,3,8,6,7,4)$
6A-1 $6,2$ $4$ $6$ $6$ $(1,8,2,5,4,6)(3,7)$

Malle's constant $a(G)$:     $1/4$

Copy content magma:ConjugacyClasses(G);
 

Character table

1A 2A 3A1 3A-1 4A 6A1 6A-1
Size 1 1 4 4 6 4 4
2 P 1A 1A 3A-1 3A1 2A 3A1 3A-1
3 P 1A 2A 1A 1A 4A 2A 2A
Type
24.3.1a R 1 1 1 1 1 1 1
24.3.1b1 C 1 1 ζ31 ζ3 1 ζ3 ζ31
24.3.1b2 C 1 1 ζ3 ζ31 1 ζ31 ζ3
24.3.2a S 2 2 1 1 0 1 1
24.3.2b1 C 2 2 ζ3 ζ31 0 ζ31 ζ3
24.3.2b2 C 2 2 ζ31 ζ3 0 ζ3 ζ31
24.3.3a R 3 3 0 0 1 0 0

Copy content magma:CharacterTable(G);
 

Regular extensions

$f_{ 1 } =$ $x^{8} + \left(t^{2} + t + 15\right) x^{6} + \left(6 t^{2} + 54\right) x^{4} + \left(5 t^{2} - 3 t + 27\right) x^{2} + t^{2}$ Copy content Toggle raw display