Show commands: Magma
Group invariants
Abstract group: | $\SL(2,3)$ |
| |
Order: | $24=2^{3} \cdot 3$ |
| |
Cyclic: | no |
| |
Abelian: | no |
| |
Solvable: | yes |
| |
Nilpotency class: | not nilpotent |
|
Group action invariants
Degree $n$: | $8$ |
| |
Transitive number $t$: | $12$ |
| |
CHM label: | $2A_{4}(8)=[2]A(4)=SL(2,3)$ | ||
Parity: | $1$ |
| |
Primitive: | no |
| |
$\card{\Aut(F/K)}$: | $2$ |
| |
Generators: | $(1,3,5,7)(2,4,6,8)$, $(1,3,8)(4,5,7)$ |
|
Low degree resolvents
$\card{(G/N)}$ Galois groups for stem field(s) $3$: $C_3$ $12$: $A_4$ Resolvents shown for degrees $\leq 47$
Subfields
Degree 2: None
Degree 4: $A_4$
Low degree siblings
24T7Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy classes
Label | Cycle Type | Size | Order | Index | Representative |
1A | $1^{8}$ | $1$ | $1$ | $0$ | $()$ |
2A | $2^{4}$ | $1$ | $2$ | $4$ | $(1,5)(2,6)(3,7)(4,8)$ |
3A1 | $3^{2},1^{2}$ | $4$ | $3$ | $4$ | $(2,8,7)(3,6,4)$ |
3A-1 | $3^{2},1^{2}$ | $4$ | $3$ | $4$ | $(2,7,8)(3,4,6)$ |
4A | $4^{2}$ | $6$ | $4$ | $6$ | $(1,7,5,3)(2,8,6,4)$ |
6A1 | $6,2$ | $4$ | $6$ | $6$ | $(1,5)(2,3,8,6,7,4)$ |
6A-1 | $6,2$ | $4$ | $6$ | $6$ | $(1,8,2,5,4,6)(3,7)$ |
Malle's constant $a(G)$: $1/4$
Character table
1A | 2A | 3A1 | 3A-1 | 4A | 6A1 | 6A-1 | ||
Size | 1 | 1 | 4 | 4 | 6 | 4 | 4 | |
2 P | 1A | 1A | 3A-1 | 3A1 | 2A | 3A1 | 3A-1 | |
3 P | 1A | 2A | 1A | 1A | 4A | 2A | 2A | |
Type | ||||||||
24.3.1a | R | |||||||
24.3.1b1 | C | |||||||
24.3.1b2 | C | |||||||
24.3.2a | S | |||||||
24.3.2b1 | C | |||||||
24.3.2b2 | C | |||||||
24.3.3a | R |
Regular extensions
$f_{ 1 } =$ |
$x^{8} + \left(t^{2} + t + 15\right) x^{6} + \left(6 t^{2} + 54\right) x^{4} + \left(5 t^{2} - 3 t + 27\right) x^{2} + t^{2}$
|