Properties

Label 8T12
Degree $8$
Order $24$
Cyclic no
Abelian no
Solvable yes
Primitive no
$p$-group no
Group: $\SL(2,3)$

Related objects

Downloads

Learn more

Show commands: Magma

magma: G := TransitiveGroup(8, 12);
 

Group action invariants

Degree $n$:  $8$
magma: t, n := TransitiveGroupIdentification(G); n;
 
Transitive number $t$:  $12$
magma: t, n := TransitiveGroupIdentification(G); t;
 
Group:  $\SL(2,3)$
CHM label:   $2A_{4}(8)=[2]A(4)=SL(2,3)$
Parity:  $1$
magma: IsEven(G);
 
Primitive:  no
magma: IsPrimitive(G);
 
magma: NilpotencyClass(G);
 
$\card{\Aut(F/K)}$:  $2$
magma: Order(Centralizer(SymmetricGroup(n), G));
 
Generators:  (1,3,5,7)(2,4,6,8), (1,3,8)(4,5,7)
magma: Generators(G);
 

Low degree resolvents

$\card{(G/N)}$Galois groups for stem field(s)
$3$:  $C_3$
$12$:  $A_4$

Resolvents shown for degrees $\leq 47$

Subfields

Degree 2: None

Degree 4: $A_4$

Low degree siblings

24T7

Siblings are shown with degree $\leq 47$

A number field with this Galois group has no arithmetically equivalent fields.

Conjugacy classes

LabelCycle TypeSizeOrderIndexRepresentative
1A $1^{8}$ $1$ $1$ $0$ $()$
2A $2^{4}$ $1$ $2$ $4$ $(1,5)(2,6)(3,7)(4,8)$
3A1 $3^{2},1^{2}$ $4$ $3$ $4$ $(1,4,2)(5,8,6)$
3A-1 $3^{2},1^{2}$ $4$ $3$ $4$ $(1,2,4)(5,6,8)$
4A $4^{2}$ $6$ $4$ $6$ $(1,7,5,3)(2,8,6,4)$
6A1 $6,2$ $4$ $6$ $6$ $(1,5)(2,3,8,6,7,4)$
6A-1 $6,2$ $4$ $6$ $6$ $(1,5)(2,4,7,6,8,3)$

Malle's constant $a(G)$:     $1/4$

magma: ConjugacyClasses(G);
 

Group invariants

Order:  $24=2^{3} \cdot 3$
magma: Order(G);
 
Cyclic:  no
magma: IsCyclic(G);
 
Abelian:  no
magma: IsAbelian(G);
 
Solvable:  yes
magma: IsSolvable(G);
 
Nilpotency class:   not nilpotent
Label:  24.3
magma: IdentifyGroup(G);
 
Character table:

1A 2A 3A1 3A-1 4A 6A1 6A-1
Size 1 1 4 4 6 4 4
2 P 1A 1A 3A-1 3A1 2A 3A1 3A-1
3 P 1A 2A 1A 1A 4A 2A 2A
Type
24.3.1a R 1 1 1 1 1 1 1
24.3.1b1 C 1 1 ζ31 ζ3 1 ζ3 ζ31
24.3.1b2 C 1 1 ζ3 ζ31 1 ζ31 ζ3
24.3.2a S 2 2 1 1 0 1 1
24.3.2b1 C 2 2 ζ3 ζ31 0 ζ31 ζ3
24.3.2b2 C 2 2 ζ31 ζ3 0 ζ3 ζ31
24.3.3a R 3 3 0 0 1 0 0

magma: CharacterTable(G);