Group action invariants
| Degree $n$ : | $8$ | |
| Transitive number $t$ : | $48$ | |
| Group : | $C_2^3:\GL(3,2)$ | |
| CHM label : | $E(8):L_{7}=AL(8)$ | |
| Parity: | $1$ | |
| Primitive: | Yes | |
| Nilpotency class: | $-1$ (not nilpotent) | |
| Generators: | (1,3)(2,8)(4,6)(5,7), (1,2,6,3,4,5,7), (1,2)(5,6), (1,8)(2,3)(4,5)(6,7), (1,2,3)(4,6,5), (1,5)(2,6)(3,7)(4,8) | |
| $|\Aut(F/K)|$: | $1$ |
Low degree resolvents
|G/N| Galois groups for stem field(s) 168: $\GL(3,2)$ Resolvents shown for degrees $\leq 47$
Subfields
Degree 2: None
Degree 4: None
Low degree siblings
8T48, 14T34 x 2, 28T153, 28T159 x 2, 42T210 x 2, 42T211 x 2Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy Classes
| Cycle Type | Size | Order | Representative |
| $ 1, 1, 1, 1, 1, 1, 1, 1 $ | $1$ | $1$ | $()$ |
| $ 2, 2, 2, 2 $ | $7$ | $2$ | $(1,3)(2,8)(4,6)(5,7)$ |
| $ 2, 2, 1, 1, 1, 1 $ | $42$ | $2$ | $(4,5)(6,7)$ |
| $ 2, 2, 2, 2 $ | $42$ | $2$ | $(1,3)(2,8)(4,7)(5,6)$ |
| $ 4, 4 $ | $84$ | $4$ | $(1,5,8,4)(2,6,3,7)$ |
| $ 3, 3, 1, 1 $ | $224$ | $3$ | $(3,4,5)(6,8,7)$ |
| $ 6, 2 $ | $224$ | $6$ | $(1,3,6,2,8,5)(4,7)$ |
| $ 4, 2, 1, 1 $ | $168$ | $4$ | $(3,4,8,7)(5,6)$ |
| $ 4, 4 $ | $168$ | $4$ | $(1,3,6,7)(2,8,5,4)$ |
| $ 7, 1 $ | $192$ | $7$ | $(2,3,4,7,5,8,6)$ |
| $ 7, 1 $ | $192$ | $7$ | $(2,3,4,8,6,5,7)$ |
Group invariants
| Order: | $1344=2^{6} \cdot 3 \cdot 7$ | |
| Cyclic: | No | |
| Abelian: | No | |
| Solvable: | No | |
| GAP id: | [1344, 11686] |
| Character table: |
2 6 6 5 5 4 1 1 3 3 . .
3 1 1 . . . 1 1 . . . .
7 1 . . . . . . . . 1 1
1a 2a 2b 2c 4a 3a 6a 4b 4c 7a 7b
2P 1a 1a 1a 1a 2a 3a 3a 2b 2c 7a 7b
3P 1a 2a 2b 2c 4a 1a 2a 4b 4c 7b 7a
5P 1a 2a 2b 2c 4a 3a 6a 4b 4c 7b 7a
7P 1a 2a 2b 2c 4a 3a 6a 4b 4c 1a 1a
X.1 1 1 1 1 1 1 1 1 1 1 1
X.2 3 3 -1 -1 -1 . . 1 1 A /A
X.3 3 3 -1 -1 -1 . . 1 1 /A A
X.4 6 6 2 2 2 . . . . -1 -1
X.5 7 -1 3 -1 -1 1 -1 1 -1 . .
X.6 7 7 -1 -1 -1 1 1 -1 -1 . .
X.7 7 -1 -1 3 -1 1 -1 -1 1 . .
X.8 8 8 . . . -1 -1 . . 1 1
X.9 14 -2 2 2 -2 -1 1 . . . .
X.10 21 -3 1 -3 1 . . -1 1 . .
X.11 21 -3 -3 1 1 . . 1 -1 . .
A = E(7)^3+E(7)^5+E(7)^6
= (-1-Sqrt(-7))/2 = -1-b7
|