Group action invariants
| Degree $n$ : | $8$ | |
| Transitive number $t$ : | $19$ | |
| Group : | $C_2^3 : C_4 $ | |
| CHM label : | $E(8):4=[1/4.eD(4)^{2}]2$ | |
| Parity: | $1$ | |
| Primitive: | No | |
| Nilpotency class: | $3$ | |
| Generators: | (1,3)(2,8)(4,6)(5,7), (1,8)(2,3)(4,5)(6,7), (1,5)(2,6)(3,7)(4,8), (1,3)(4,5,6,7) | |
| $|\Aut(F/K)|$: | $2$ |
Low degree resolvents
|G/N| Galois groups for stem field(s) 2: $C_2$ x 3 4: $C_4$ x 2, $C_2^2$ 8: $D_{4}$ x 2, $C_4\times C_2$ 16: $C_2^2:C_4$ Resolvents shown for degrees $\leq 47$
Subfields
Degree 2: $C_2$
Degree 4: $D_{4}$
Low degree siblings
8T19, 8T20, 8T21, 16T33 x 2, 16T52, 16T53, 32T19Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy Classes
| Cycle Type | Size | Order | Representative |
| $ 1, 1, 1, 1, 1, 1, 1, 1 $ | $1$ | $1$ | $()$ |
| $ 2, 2, 1, 1, 1, 1 $ | $2$ | $2$ | $(4,6)(5,7)$ |
| $ 4, 2, 1, 1 $ | $4$ | $4$ | $(2,8)(4,5,6,7)$ |
| $ 4, 2, 1, 1 $ | $4$ | $4$ | $(2,8)(4,7,6,5)$ |
| $ 2, 2, 2, 2 $ | $2$ | $2$ | $(1,2)(3,8)(4,5)(6,7)$ |
| $ 2, 2, 2, 2 $ | $2$ | $2$ | $(1,2)(3,8)(4,7)(5,6)$ |
| $ 2, 2, 2, 2 $ | $1$ | $2$ | $(1,3)(2,8)(4,6)(5,7)$ |
| $ 4, 4 $ | $4$ | $4$ | $(1,4,2,5)(3,6,8,7)$ |
| $ 4, 4 $ | $4$ | $4$ | $(1,4,8,7)(2,5,3,6)$ |
| $ 2, 2, 2, 2 $ | $4$ | $2$ | $(1,4)(2,7)(3,6)(5,8)$ |
| $ 4, 4 $ | $4$ | $4$ | $(1,4,3,6)(2,7,8,5)$ |
Group invariants
| Order: | $32=2^{5}$ | |
| Cyclic: | No | |
| Abelian: | No | |
| Solvable: | Yes | |
| GAP id: | [32, 6] |
| Character table: |
2 5 4 3 3 4 4 5 3 3 3 3
1a 2a 4a 4b 2b 2c 2d 4c 4d 2e 4e
2P 1a 1a 2a 2a 1a 1a 1a 2b 2b 1a 2d
3P 1a 2a 4b 4a 2b 2c 2d 4d 4c 2e 4e
X.1 1 1 1 1 1 1 1 1 1 1 1
X.2 1 1 -1 -1 1 1 1 -1 -1 1 1
X.3 1 1 -1 -1 1 1 1 1 1 -1 -1
X.4 1 1 1 1 1 1 1 -1 -1 -1 -1
X.5 1 -1 A -A -1 1 1 A -A -1 1
X.6 1 -1 -A A -1 1 1 -A A -1 1
X.7 1 -1 A -A -1 1 1 -A A 1 -1
X.8 1 -1 -A A -1 1 1 A -A 1 -1
X.9 2 2 . . -2 -2 2 . . . .
X.10 2 -2 . . 2 -2 2 . . . .
X.11 4 . . . . . -4 . . . .
A = -E(4)
= -Sqrt(-1) = -i
|