Show commands:
Magma
magma: G := TransitiveGroup(8, 19);
Group action invariants
Degree $n$: | $8$ | magma: t, n := TransitiveGroupIdentification(G); n;
| |
Transitive number $t$: | $19$ | magma: t, n := TransitiveGroupIdentification(G); t;
| |
Group: | $C_2^3 : C_4 $ | ||
CHM label: | $E(8):4=[1/4.eD(4)^{2}]2$ | ||
Parity: | $1$ | magma: IsEven(G);
| |
Primitive: | no | magma: IsPrimitive(G);
| magma: NilpotencyClass(G);
|
$\card{\Aut(F/K)}$: | $2$ | magma: Order(Centralizer(SymmetricGroup(n), G));
| |
Generators: | (1,3)(2,8)(4,6)(5,7), (1,8)(2,3)(4,5)(6,7), (1,5)(2,6)(3,7)(4,8), (1,3)(4,5,6,7) | magma: Generators(G);
|
Low degree resolvents
$\card{(G/N)}$ Galois groups for stem field(s) $2$: $C_2$ x 3 $4$: $C_4$ x 2, $C_2^2$ $8$: $D_{4}$ x 2, $C_4\times C_2$ $16$: $C_2^2:C_4$ Resolvents shown for degrees $\leq 47$
Subfields
Degree 2: $C_2$
Degree 4: $D_{4}$
Low degree siblings
8T19, 8T20, 8T21, 16T33 x 2, 16T52, 16T53, 32T19Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy classes
Label | Cycle Type | Size | Order | Index | Representative |
1A | $1^{8}$ | $1$ | $1$ | $0$ | $()$ |
2A | $2^{4}$ | $1$ | $2$ | $4$ | $(1,3)(2,8)(4,6)(5,7)$ |
2B | $2^{4}$ | $2$ | $2$ | $4$ | $(1,8)(2,3)(4,5)(6,7)$ |
2C | $2^{2},1^{4}$ | $2$ | $2$ | $2$ | $(4,6)(5,7)$ |
2D | $2^{4}$ | $2$ | $2$ | $4$ | $(1,8)(2,3)(4,7)(5,6)$ |
2E | $2^{4}$ | $4$ | $2$ | $4$ | $(1,5)(2,6)(3,7)(4,8)$ |
4A | $4^{2}$ | $4$ | $4$ | $6$ | $(1,7,2,6)(3,5,8,4)$ |
4B1 | $4^{2}$ | $4$ | $4$ | $6$ | $(1,5,8,6)(2,4,3,7)$ |
4B-1 | $4,2,1^{2}$ | $4$ | $4$ | $4$ | $(2,8)(4,5,6,7)$ |
4C1 | $4^{2}$ | $4$ | $4$ | $6$ | $(1,7,3,5)(2,4,8,6)$ |
4C-1 | $4,2,1^{2}$ | $4$ | $4$ | $4$ | $(2,8)(4,7,6,5)$ |
Malle's constant $a(G)$: $1/2$
magma: ConjugacyClasses(G);
Group invariants
Order: | $32=2^{5}$ | magma: Order(G);
| |
Cyclic: | no | magma: IsCyclic(G);
| |
Abelian: | no | magma: IsAbelian(G);
| |
Solvable: | yes | magma: IsSolvable(G);
| |
Nilpotency class: | $3$ | ||
Label: | 32.6 | magma: IdentifyGroup(G);
| |
Character table: |
1A | 2A | 2B | 2C | 2D | 2E | 4A | 4B1 | 4B-1 | 4C1 | 4C-1 | ||
Size | 1 | 1 | 2 | 2 | 2 | 4 | 4 | 4 | 4 | 4 | 4 | |
2 P | 1A | 1A | 1A | 1A | 1A | 1A | 2D | 2D | 2C | 2A | 2C | |
Type | ||||||||||||
32.6.1a | R | |||||||||||
32.6.1b | R | |||||||||||
32.6.1c | R | |||||||||||
32.6.1d | R | |||||||||||
32.6.1e1 | C | |||||||||||
32.6.1e2 | C | |||||||||||
32.6.1f1 | C | |||||||||||
32.6.1f2 | C | |||||||||||
32.6.2a | R | |||||||||||
32.6.2b | R | |||||||||||
32.6.4a | R |
magma: CharacterTable(G);