Group action invariants
| Degree $n$ : | $8$ | |
| Transitive number $t$ : | $38$ | |
| Group : | $C_2\wr A_4$ | |
| CHM label : | $[2^{4}]A(4)$ | |
| Parity: | $-1$ | |
| Primitive: | No | |
| Nilpotency class: | $-1$ (not nilpotent) | |
| Generators: | (1,8)(2,3)(4,5)(6,7), (1,2,3)(5,6,7), (4,8) | |
| $|\Aut(F/K)|$: | $2$ |
Low degree resolvents
|G/N| Galois groups for stem field(s) 2: $C_2$ 3: $C_3$ 6: $C_6$ 12: $A_4$ 24: $A_4\times C_2$ 96: $C_2^4:C_6$ Resolvents shown for degrees $\leq 47$
Subfields
Degree 2: None
Degree 4: $A_4$
Low degree siblings
8T38, 16T425, 16T427, 24T288 x 2, 24T425 x 2, 32T2185 x 2Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy Classes
| Cycle Type | Size | Order | Representative |
| $ 1, 1, 1, 1, 1, 1, 1, 1 $ | $1$ | $1$ | $()$ |
| $ 2, 1, 1, 1, 1, 1, 1 $ | $4$ | $2$ | $(4,8)$ |
| $ 2, 2, 1, 1, 1, 1 $ | $6$ | $2$ | $(3,7)(4,8)$ |
| $ 3, 3, 1, 1 $ | $16$ | $3$ | $(2,3,4)(6,7,8)$ |
| $ 6, 1, 1 $ | $16$ | $6$ | $(2,3,4,6,7,8)$ |
| $ 3, 3, 1, 1 $ | $16$ | $3$ | $(2,4,3)(6,8,7)$ |
| $ 6, 1, 1 $ | $16$ | $6$ | $(2,4,7,6,8,3)$ |
| $ 2, 2, 2, 1, 1 $ | $4$ | $2$ | $(2,6)(3,7)(4,8)$ |
| $ 2, 2, 2, 2 $ | $12$ | $2$ | $(1,2)(3,4)(5,6)(7,8)$ |
| $ 4, 2, 2 $ | $24$ | $4$ | $(1,2)(3,4,7,8)(5,6)$ |
| $ 3, 3, 2 $ | $16$ | $6$ | $(1,2,3)(4,8)(5,6,7)$ |
| $ 6, 2 $ | $16$ | $6$ | $(1,2,3,5,6,7)(4,8)$ |
| $ 3, 3, 2 $ | $16$ | $6$ | $(1,2,4)(3,7)(5,6,8)$ |
| $ 6, 2 $ | $16$ | $6$ | $(1,2,4,5,6,8)(3,7)$ |
| $ 4, 4 $ | $12$ | $4$ | $(1,2,5,6)(3,4,7,8)$ |
| $ 2, 2, 2, 2 $ | $1$ | $2$ | $(1,5)(2,6)(3,7)(4,8)$ |
Group invariants
| Order: | $192=2^{6} \cdot 3$ | |
| Cyclic: | No | |
| Abelian: | No | |
| Solvable: | Yes | |
| GAP id: | [192, 201] |
| Character table: |
2 6 4 5 2 2 2 2 4 4 3 2 2 2 2 4 6
3 1 1 . 1 1 1 1 1 . . 1 1 1 1 . 1
1a 2a 2b 3a 6a 3b 6b 2c 2d 4a 6c 6d 6e 6f 4b 2e
2P 1a 1a 1a 3b 3b 3a 3a 1a 1a 2b 3a 3a 3b 3b 2e 1a
3P 1a 2a 2b 1a 2c 1a 2c 2c 2d 4a 2a 2e 2a 2e 4b 2e
5P 1a 2a 2b 3b 6b 3a 6a 2c 2d 4a 6e 6f 6c 6d 4b 2e
X.1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
X.2 1 -1 1 1 -1 1 -1 -1 1 -1 -1 1 -1 1 1 1
X.3 1 -1 1 A -A /A -/A -1 1 -1 -/A /A -A A 1 1
X.4 1 -1 1 /A -/A A -A -1 1 -1 -A A -/A /A 1 1
X.5 1 1 1 A A /A /A 1 1 1 /A /A A A 1 1
X.6 1 1 1 /A /A A A 1 1 1 A A /A /A 1 1
X.7 3 -3 3 . . . . -3 -1 1 . . . . -1 3
X.8 3 3 3 . . . . 3 -1 -1 . . . . -1 3
X.9 4 -2 . 1 -1 1 -1 2 . . 1 -1 1 -1 . -4
X.10 4 2 . 1 1 1 1 -2 . . -1 -1 -1 -1 . -4
X.11 4 -2 . A -A /A -/A 2 . . /A -/A A -A . -4
X.12 4 -2 . /A -/A A -A 2 . . A -A /A -/A . -4
X.13 4 2 . A A /A /A -2 . . -/A -/A -A -A . -4
X.14 4 2 . /A /A A A -2 . . -A -A -/A -/A . -4
X.15 6 . -2 . . . . . -2 . . . . . 2 6
X.16 6 . -2 . . . . . 2 . . . . . -2 6
A = E(3)^2
= (-1-Sqrt(-3))/2 = -1-b3
|