Group action invariants
| Degree $n$ : | $8$ | |
| Transitive number $t$ : | $23$ | |
| Group : | $\textrm{GL(2,3)}$ | |
| CHM label : | $2S_{4}(8)=GL(2,3)$ | |
| Parity: | $-1$ | |
| Primitive: | No | |
| Nilpotency class: | $-1$ (not nilpotent) | |
| Generators: | (1,2,3,4,5,6,7,8), (1,3,8)(4,5,7) | |
| $|\Aut(F/K)|$: | $2$ |
Low degree resolvents
|G/N| Galois groups for stem field(s) 2: $C_2$ 6: $S_3$ 24: $S_4$ Resolvents shown for degrees $\leq 47$
Subfields
Degree 2: None
Degree 4: $S_4$
Low degree siblings
8T23, 16T66, 24T22Siblings are shown with degree $\leq 47$
A number field with this Galois group has exactly one arithmetically equivalent field.
Conjugacy Classes
| Cycle Type | Size | Order | Representative |
| $ 1, 1, 1, 1, 1, 1, 1, 1 $ | $1$ | $1$ | $()$ |
| $ 2, 2, 2, 1, 1 $ | $12$ | $2$ | $(2,3)(4,8)(6,7)$ |
| $ 3, 3, 1, 1 $ | $8$ | $3$ | $(2,7,8)(3,4,6)$ |
| $ 8 $ | $6$ | $8$ | $(1,2,3,4,5,6,7,8)$ |
| $ 4, 4 $ | $6$ | $4$ | $(1,2,5,6)(3,8,7,4)$ |
| $ 6, 2 $ | $8$ | $6$ | $(1,2,7,5,6,3)(4,8)$ |
| $ 8 $ | $6$ | $8$ | $(1,2,8,3,5,6,4,7)$ |
| $ 2, 2, 2, 2 $ | $1$ | $2$ | $(1,5)(2,6)(3,7)(4,8)$ |
Group invariants
| Order: | $48=2^{4} \cdot 3$ | |
| Cyclic: | No | |
| Abelian: | No | |
| Solvable: | Yes | |
| GAP id: | [48, 29] |
| Character table: |
2 4 2 1 3 3 1 3 4
3 1 . 1 . . 1 . 1
1a 2a 3a 8a 4a 6a 8b 2b
2P 1a 1a 3a 4a 2b 3a 4a 1a
3P 1a 2a 1a 8a 4a 2b 8b 2b
5P 1a 2a 3a 8b 4a 6a 8a 2b
7P 1a 2a 3a 8b 4a 6a 8a 2b
X.1 1 1 1 1 1 1 1 1
X.2 1 -1 1 -1 1 1 -1 1
X.3 2 . -1 . 2 -1 . 2
X.4 2 . -1 A . 1 -A -2
X.5 2 . -1 -A . 1 A -2
X.6 3 1 . -1 -1 . -1 3
X.7 3 -1 . 1 -1 . 1 3
X.8 4 . 1 . . -1 . -4
A = E(8)+E(8)^3
= Sqrt(-2) = i2
|