Show commands: Magma
Group invariants
| Abstract group: | $\textrm{GL(2,3)}$ |
| |
| Order: | $48=2^{4} \cdot 3$ |
| |
| Cyclic: | no |
| |
| Abelian: | no |
| |
| Solvable: | yes |
| |
| Nilpotency class: | not nilpotent |
|
Group action invariants
| Degree $n$: | $8$ |
| |
| Transitive number $t$: | $23$ |
| |
| CHM label: | $2S_{4}(8)=GL(2,3)$ | ||
| Parity: | $-1$ |
| |
| Primitive: | no |
| |
| $\card{\Aut(F/K)}$: | $2$ |
| |
| Generators: | $(1,2,3,4,5,6,7,8)$, $(1,3,8)(4,5,7)$ |
|
Low degree resolvents
$\card{(G/N)}$ Galois groups for stem field(s) $2$: $C_2$ $6$: $S_3$ $24$: $S_4$ Resolvents shown for degrees $\leq 47$
Subfields
Degree 2: None
Degree 4: $S_4$
Low degree siblings
8T23, 16T66, 24T22Siblings are shown with degree $\leq 47$
A number field with this Galois group has exactly one arithmetically equivalent field.
Conjugacy classes
| Label | Cycle Type | Size | Order | Index | Representative |
| 1A | $1^{8}$ | $1$ | $1$ | $0$ | $()$ |
| 2A | $2^{4}$ | $1$ | $2$ | $4$ | $(1,5)(2,6)(3,7)(4,8)$ |
| 2B | $2^{3},1^{2}$ | $12$ | $2$ | $3$ | $(1,8)(2,6)(4,5)$ |
| 3A | $3^{2},1^{2}$ | $8$ | $3$ | $4$ | $(1,2,4)(5,6,8)$ |
| 4A | $4^{2}$ | $6$ | $4$ | $6$ | $(1,6,5,2)(3,4,7,8)$ |
| 6A | $6,2$ | $8$ | $6$ | $6$ | $(1,8,2,5,4,6)(3,7)$ |
| 8A1 | $8$ | $6$ | $8$ | $7$ | $(1,4,6,7,5,8,2,3)$ |
| 8A-1 | $8$ | $6$ | $8$ | $7$ | $(1,2,3,4,5,6,7,8)$ |
Malle's constant $a(G)$: $1/3$
Character table
| 1A | 2A | 2B | 3A | 4A | 6A | 8A1 | 8A-1 | ||
| Size | 1 | 1 | 12 | 8 | 6 | 8 | 6 | 6 | |
| 2 P | 1A | 1A | 1A | 3A | 2A | 3A | 4A | 4A | |
| 3 P | 1A | 2A | 2B | 1A | 4A | 2A | 8A1 | 8A-1 | |
| Type | |||||||||
| 48.29.1a | R | ||||||||
| 48.29.1b | R | ||||||||
| 48.29.2a | R | ||||||||
| 48.29.2b1 | C | ||||||||
| 48.29.2b2 | C | ||||||||
| 48.29.3a | R | ||||||||
| 48.29.3b | R | ||||||||
| 48.29.4a | R |
Regular extensions
| $f_{ 1 } =$ |
$x^{8} + 4 t x^{6} + \left(132 t - 726\right) x^{4} + \left(129 t + 132\right) x^{2} + \left(32 t - 803\right)$
|