Group action invariants
| Degree $n$ : | $8$ | |
| Transitive number $t$ : | $37$ | |
| Group : | $\PSL(2,7)$ | |
| CHM label : | $L(8)=PSL(2,7)$ | |
| Parity: | $1$ | |
| Primitive: | Yes | |
| Nilpotency class: | $-1$ (not nilpotent) | |
| Generators: | (1,2,4)(3,6,5), (1,2,3,4,5,6,8), (1,6)(2,3)(4,5)(7,8) | |
| $|\Aut(F/K)|$: | $1$ |
Low degree resolvents
NoneResolvents shown for degrees $\leq 47$
Subfields
Degree 2: None
Degree 4: None
Low degree siblings
7T5 x 2, 14T10 x 2, 21T14, 24T284, 28T32, 42T37, 42T38 x 2Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy Classes
| Cycle Type | Size | Order | Representative |
| $ 1, 1, 1, 1, 1, 1, 1, 1 $ | $1$ | $1$ | $()$ |
| $ 3, 3, 1, 1 $ | $56$ | $3$ | $(3,7,8)(4,5,6)$ |
| $ 7, 1 $ | $24$ | $7$ | $(2,3,7,6,8,5,4)$ |
| $ 7, 1 $ | $24$ | $7$ | $(2,4,5,8,6,7,3)$ |
| $ 2, 2, 2, 2 $ | $21$ | $2$ | $(1,2)(3,4)(5,8)(6,7)$ |
| $ 4, 4 $ | $42$ | $4$ | $(1,2,3,7)(4,6,5,8)$ |
Group invariants
| Order: | $168=2^{3} \cdot 3 \cdot 7$ | |
| Cyclic: | No | |
| Abelian: | No | |
| Solvable: | No | |
| GAP id: | [168, 42] |
| Character table: |
2 3 . . . 3 2
3 1 1 . . . .
7 1 . 1 1 . .
1a 3a 7a 7b 2a 4a
2P 1a 3a 7a 7b 1a 2a
3P 1a 1a 7b 7a 2a 4a
5P 1a 3a 7b 7a 2a 4a
7P 1a 3a 1a 1a 2a 4a
X.1 1 1 1 1 1 1
X.2 3 . A /A -1 1
X.3 3 . /A A -1 1
X.4 6 . -1 -1 2 .
X.5 7 1 . . -1 -1
X.6 8 -1 1 1 . .
A = E(7)^3+E(7)^5+E(7)^6
= (-1-Sqrt(-7))/2 = -1-b7
|