Group action invariants
| Degree $n$ : | $8$ | |
| Transitive number $t$ : | $44$ | |
| Group : | $C_2 \wr S_4$ | |
| CHM label : | $[2^{4}]S(4)$ | |
| Parity: | $-1$ | |
| Primitive: | No | |
| Nilpotency class: | $-1$ (not nilpotent) | |
| Generators: | (1,2,3,8)(4,5,6,7), (1,8)(4,5), (4,8) | |
| $|\Aut(F/K)|$: | $2$ |
Low degree resolvents
|G/N| Galois groups for stem field(s) 2: $C_2$ x 3 4: $C_2^2$ 6: $S_3$ 12: $D_{6}$ 24: $S_4$ 48: $S_4\times C_2$ 192: $V_4^2:(S_3\times C_2)$ Resolvents shown for degrees $\leq 47$
Subfields
Degree 2: None
Degree 4: $S_4$
Low degree siblings
8T44 x 3, 16T736 x 2, 16T743 x 2, 16T748 x 2, 16T752 x 2, 24T708 x 4, 24T1151 x 4, 32T9340, 32T9355, 32T9459 x 4Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy Classes
| Cycle Type | Size | Order | Representative |
| $ 1, 1, 1, 1, 1, 1, 1, 1 $ | $1$ | $1$ | $()$ |
| $ 2, 1, 1, 1, 1, 1, 1 $ | $4$ | $2$ | $(4,8)$ |
| $ 2, 2, 1, 1, 1, 1 $ | $12$ | $2$ | $(3,4)(7,8)$ |
| $ 4, 1, 1, 1, 1 $ | $12$ | $4$ | $(3,4,7,8)$ |
| $ 2, 2, 1, 1, 1, 1 $ | $6$ | $2$ | $(3,7)(4,8)$ |
| $ 2, 2, 2, 1, 1 $ | $24$ | $2$ | $(2,3)(4,8)(6,7)$ |
| $ 3, 3, 1, 1 $ | $32$ | $3$ | $(2,3,4)(6,7,8)$ |
| $ 6, 1, 1 $ | $32$ | $6$ | $(2,3,4,6,7,8)$ |
| $ 4, 2, 1, 1 $ | $24$ | $4$ | $(2,3,6,7)(4,8)$ |
| $ 2, 2, 2, 1, 1 $ | $4$ | $2$ | $(2,6)(3,7)(4,8)$ |
| $ 2, 2, 2, 2 $ | $12$ | $2$ | $(1,2)(3,4)(5,6)(7,8)$ |
| $ 4, 2, 2 $ | $24$ | $4$ | $(1,2)(3,4,7,8)(5,6)$ |
| $ 2, 2, 2, 2 $ | $12$ | $2$ | $(1,2)(3,7)(4,8)(5,6)$ |
| $ 3, 3, 2 $ | $32$ | $6$ | $(1,2,3)(4,8)(5,6,7)$ |
| $ 4, 4 $ | $48$ | $4$ | $(1,2,3,4)(5,6,7,8)$ |
| $ 8 $ | $48$ | $8$ | $(1,2,3,4,5,6,7,8)$ |
| $ 6, 2 $ | $32$ | $6$ | $(1,2,3,5,6,7)(4,8)$ |
| $ 4, 4 $ | $12$ | $4$ | $(1,2,5,6)(3,4,7,8)$ |
| $ 4, 2, 2 $ | $12$ | $4$ | $(1,2,5,6)(3,7)(4,8)$ |
| $ 2, 2, 2, 2 $ | $1$ | $2$ | $(1,5)(2,6)(3,7)(4,8)$ |
Group invariants
| Order: | $384=2^{7} \cdot 3$ | |
| Cyclic: | No | |
| Abelian: | No | |
| Solvable: | Yes | |
| GAP id: | [384, 5602] |
| Character table: |
2 7 5 5 5 6 4 2 2 4 5 5 4 5 2 3 3 2 5 5 7
3 1 1 . . . . 1 1 . 1 . . . 1 . . 1 . . 1
1a 2a 2b 4a 2c 2d 3a 6a 4b 2e 2f 4c 2g 6b 4d 8a 6c 4e 4f 2h
2P 1a 1a 1a 2c 1a 1a 3a 3a 2c 1a 1a 2c 1a 3a 2f 4e 3a 2h 2c 1a
3P 1a 2a 2b 4a 2c 2d 1a 2e 4b 2e 2f 4c 2g 2a 4d 8a 2h 4e 4f 2h
5P 1a 2a 2b 4a 2c 2d 3a 6a 4b 2e 2f 4c 2g 6b 4d 8a 6c 4e 4f 2h
7P 1a 2a 2b 4a 2c 2d 3a 6a 4b 2e 2f 4c 2g 6b 4d 8a 6c 4e 4f 2h
X.1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
X.2 1 -1 -1 1 1 1 1 -1 -1 -1 1 -1 -1 -1 -1 1 1 1 1 1
X.3 1 -1 1 -1 1 -1 1 -1 1 -1 1 -1 1 -1 1 -1 1 1 -1 1
X.4 1 1 -1 -1 1 -1 1 1 -1 1 1 1 -1 1 -1 -1 1 1 -1 1
X.5 2 -2 . . 2 . -1 1 . -2 2 -2 . 1 . . -1 2 . 2
X.6 2 2 . . 2 . -1 -1 . 2 2 2 . -1 . . -1 2 . 2
X.7 3 -3 -1 1 3 1 . . -1 -3 -1 1 -1 . 1 -1 . -1 1 3
X.8 3 -3 1 -1 3 -1 . . 1 -3 -1 1 1 . -1 1 . -1 -1 3
X.9 3 3 -1 -1 3 -1 . . -1 3 -1 -1 -1 . 1 1 . -1 -1 3
X.10 3 3 1 1 3 1 . . 1 3 -1 -1 1 . -1 -1 . -1 1 3
X.11 4 -2 2 -2 . . 1 -1 . 2 . . -2 1 . . -1 . 2 -4
X.12 4 -2 -2 2 . . 1 -1 . 2 . . 2 1 . . -1 . -2 -4
X.13 4 2 2 2 . . 1 1 . -2 . . -2 -1 . . -1 . -2 -4
X.14 4 2 -2 -2 . . 1 1 . -2 . . 2 -1 . . -1 . 2 -4
X.15 6 . -2 . -2 . . . 2 . 2 . -2 . . . . -2 . 6
X.16 6 . 2 . -2 . . . -2 . 2 . 2 . . . . -2 . 6
X.17 6 . . -2 -2 2 . . . . -2 . . . . . . 2 -2 6
X.18 6 . . 2 -2 -2 . . . . -2 . . . . . . 2 2 6
X.19 8 -4 . . . . -1 1 . 4 . . . -1 . . 1 . . -8
X.20 8 4 . . . . -1 -1 . -4 . . . 1 . . 1 . . -8
|