Group action invariants
| Degree $n$ : | $8$ | |
| Transitive number $t$ : | $35$ | |
| Group : | $C_2 \wr C_2\wr C_2$ | |
| CHM label : | $[2^{4}]D(4)$ | |
| Parity: | $-1$ | |
| Primitive: | No | |
| Nilpotency class: | $4$ | |
| Generators: | (1,2,3,8)(4,5,6,7), (4,8), (1,3)(5,7) | |
| $|\Aut(F/K)|$: | $2$ |
Low degree resolvents
|G/N| Galois groups for stem field(s) 2: $C_2$ x 7 4: $C_2^2$ x 7 8: $D_{4}$ x 6, $C_2^3$ 16: $D_4\times C_2$ x 3 32: $C_2^2 \wr C_2$ 64: $(((C_4 \times C_2): C_2):C_2):C_2$ Resolvents shown for degrees $\leq 47$
Subfields
Degree 2: $C_2$
Degree 4: $D_{4}$
Low degree siblings
8T35 x 7, 16T376 x 4, 16T388 x 4, 16T390 x 4, 16T391 x 4, 16T393 x 4, 16T395 x 4, 16T396 x 4, 16T401 x 4, 32T852 x 4, 32T853 x 2, 32T854 x 2, 32T872 x 2, 32T876 x 4, 32T877 x 2, 32T880 x 2, 32T882 x 2, 32T883 x 4, 32T884 x 2, 32T885 x 2Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy Classes
| Cycle Type | Size | Order | Representative |
| $ 1, 1, 1, 1, 1, 1, 1, 1 $ | $1$ | $1$ | $()$ |
| $ 2, 1, 1, 1, 1, 1, 1 $ | $4$ | $2$ | $(4,8)$ |
| $ 2, 2, 1, 1, 1, 1 $ | $4$ | $2$ | $(3,7)(4,8)$ |
| $ 2, 2, 1, 1, 1, 1 $ | $4$ | $2$ | $(2,4)(6,8)$ |
| $ 4, 1, 1, 1, 1 $ | $4$ | $4$ | $(2,4,6,8)$ |
| $ 2, 2, 2, 1, 1 $ | $8$ | $2$ | $(2,4)(3,7)(6,8)$ |
| $ 4, 2, 1, 1 $ | $8$ | $4$ | $(2,4,6,8)(3,7)$ |
| $ 2, 2, 1, 1, 1, 1 $ | $2$ | $2$ | $(2,6)(4,8)$ |
| $ 2, 2, 2, 1, 1 $ | $4$ | $2$ | $(2,6)(3,7)(4,8)$ |
| $ 2, 2, 2, 2 $ | $8$ | $2$ | $(1,2)(3,4)(5,6)(7,8)$ |
| $ 4, 2, 2 $ | $16$ | $4$ | $(1,2)(3,4,7,8)(5,6)$ |
| $ 4, 4 $ | $16$ | $4$ | $(1,2,3,4)(5,6,7,8)$ |
| $ 8 $ | $16$ | $8$ | $(1,2,3,4,5,6,7,8)$ |
| $ 4, 4 $ | $8$ | $4$ | $(1,2,5,6)(3,4,7,8)$ |
| $ 2, 2, 2, 2 $ | $4$ | $2$ | $(1,3)(2,4)(5,7)(6,8)$ |
| $ 4, 2, 2 $ | $8$ | $4$ | $(1,3)(2,4,6,8)(5,7)$ |
| $ 4, 4 $ | $4$ | $4$ | $(1,3,5,7)(2,4,6,8)$ |
| $ 2, 2, 2, 2 $ | $4$ | $2$ | $(1,3)(2,6)(4,8)(5,7)$ |
| $ 4, 2, 2 $ | $4$ | $4$ | $(1,3,5,7)(2,6)(4,8)$ |
| $ 2, 2, 2, 2 $ | $1$ | $2$ | $(1,5)(2,6)(3,7)(4,8)$ |
Group invariants
| Order: | $128=2^{7}$ | |
| Cyclic: | No | |
| Abelian: | No | |
| Solvable: | Yes | |
| GAP id: | [128, 928] |
| Character table: |
2 7 5 5 5 5 4 4 6 5 4 3 3 3 4 5 4 5 5 5 7
1a 2a 2b 2c 4a 2d 4b 2e 2f 2g 4c 4d 8a 4e 2h 4f 4g 2i 4h 2j
2P 1a 1a 1a 1a 2e 1a 2e 1a 1a 1a 2b 2h 4g 2j 1a 2e 2j 1a 2e 1a
3P 1a 2a 2b 2c 4a 2d 4b 2e 2f 2g 4c 4d 8a 4e 2h 4f 4g 2i 4h 2j
5P 1a 2a 2b 2c 4a 2d 4b 2e 2f 2g 4c 4d 8a 4e 2h 4f 4g 2i 4h 2j
7P 1a 2a 2b 2c 4a 2d 4b 2e 2f 2g 4c 4d 8a 4e 2h 4f 4g 2i 4h 2j
X.1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
X.2 1 -1 1 -1 1 1 -1 1 -1 -1 1 1 -1 -1 1 -1 1 -1 1 1
X.3 1 -1 1 -1 1 1 -1 1 -1 1 -1 -1 1 1 1 -1 1 -1 1 1
X.4 1 -1 1 1 -1 -1 1 1 -1 -1 1 -1 1 -1 1 -1 1 1 -1 1
X.5 1 -1 1 1 -1 -1 1 1 -1 1 -1 1 -1 1 1 -1 1 1 -1 1
X.6 1 1 1 -1 -1 -1 -1 1 1 -1 -1 1 1 -1 1 1 1 -1 -1 1
X.7 1 1 1 -1 -1 -1 -1 1 1 1 1 -1 -1 1 1 1 1 -1 -1 1
X.8 1 1 1 1 1 1 1 1 1 -1 -1 -1 -1 -1 1 1 1 1 1 1
X.9 2 2 2 . . . . 2 2 . . . . . -2 -2 -2 . . 2
X.10 2 -2 2 . . . . 2 -2 . . . . . -2 2 -2 . . 2
X.11 2 . -2 2 . . -2 2 . . . . . . 2 . -2 2 . 2
X.12 2 . -2 -2 . . 2 2 . . . . . . 2 . -2 -2 . 2
X.13 2 . -2 . -2 2 . 2 . . . . . . -2 . 2 . -2 2
X.14 2 . -2 . 2 -2 . 2 . . . . . . -2 . 2 . 2 2
X.15 4 . . . . . . -4 . -2 . . . 2 . . . . . 4
X.16 4 . . . . . . -4 . 2 . . . -2 . . . . . 4
X.17 4 -2 . -2 2 . . . 2 . . . . . . . . 2 -2 -4
X.18 4 -2 . 2 -2 . . . 2 . . . . . . . . -2 2 -4
X.19 4 2 . -2 -2 . . . -2 . . . . . . . . 2 2 -4
X.20 4 2 . 2 2 . . . -2 . . . . . . . . -2 -2 -4
|