Show commands: Magma
                    
            
Group invariants
| Abstract group: | $C_2 \wr C_2\wr C_2$ |  | |
| Order: | $128=2^{7}$ |  | |
| Cyclic: | no |  | |
| Abelian: | no |  | |
| Solvable: | yes |  | |
| Nilpotency class: | $4$ |  | 
Group action invariants
| Degree $n$: | $8$ |  | |
| Transitive number $t$: | $35$ |  | |
| CHM label: | $[2^{4}]D(4)$ | ||
| Parity: | $-1$ |  | |
| Primitive: | no |  | |
| $\card{\Aut(F/K)}$: | $2$ |  | |
| Generators: | $(1,2,3,8)(4,5,6,7)$, $(4,8)$, $(1,3)(5,7)$ |  | 
Low degree resolvents
$\card{(G/N)}$ Galois groups for stem field(s) $2$: $C_2$ x 7 $4$: $C_2^2$ x 7 $8$: $D_{4}$ x 6, $C_2^3$ $16$: $D_4\times C_2$ x 3 $32$: $C_2^2 \wr C_2$ $64$: $(((C_4 \times C_2): C_2):C_2):C_2$ Resolvents shown for degrees $\leq 47$
Subfields
Degree 2: $C_2$
Degree 4: $D_{4}$
Low degree siblings
8T35 x 7, 16T376 x 4, 16T388 x 4, 16T390 x 4, 16T391 x 4, 16T393 x 4, 16T395 x 4, 16T396 x 4, 16T401 x 4, 32T852 x 4, 32T853 x 2, 32T854 x 2, 32T872 x 2, 32T876 x 4, 32T877 x 2, 32T880 x 2, 32T882 x 2, 32T883 x 4, 32T884 x 2, 32T885 x 2Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy classes
| Label | Cycle Type | Size | Order | Index | Representative | 
| 1A | $1^{8}$ | $1$ | $1$ | $0$ | $()$ | 
| 2A | $2^{4}$ | $1$ | $2$ | $4$ | $(1,5)(2,6)(3,7)(4,8)$ | 
| 2B | $2^{2},1^{4}$ | $2$ | $2$ | $2$ | $(2,6)(4,8)$ | 
| 2C | $2^{2},1^{4}$ | $4$ | $2$ | $2$ | $(2,8)(4,6)$ | 
| 2D | $2,1^{6}$ | $4$ | $2$ | $1$ | $(4,8)$ | 
| 2E | $2^{4}$ | $4$ | $2$ | $4$ | $(1,3)(2,6)(4,8)(5,7)$ | 
| 2F | $2^{3},1^{2}$ | $4$ | $2$ | $3$ | $(1,5)(3,7)(4,8)$ | 
| 2G | $2^{4}$ | $4$ | $2$ | $4$ | $(1,3)(2,4)(5,7)(6,8)$ | 
| 2H | $2^{2},1^{4}$ | $4$ | $2$ | $2$ | $(1,5)(2,6)$ | 
| 2I | $2^{3},1^{2}$ | $8$ | $2$ | $3$ | $(1,3)(4,8)(5,7)$ | 
| 2J | $2^{4}$ | $8$ | $2$ | $4$ | $(1,2)(3,8)(4,7)(5,6)$ | 
| 4A | $4,1^{4}$ | $4$ | $4$ | $3$ | $(2,4,6,8)$ | 
| 4B | $4,2^{2}$ | $4$ | $4$ | $5$ | $(1,5)(2,4,6,8)(3,7)$ | 
| 4C | $4^{2}$ | $4$ | $4$ | $6$ | $(1,7,5,3)(2,4,6,8)$ | 
| 4D | $4,2^{2}$ | $8$ | $4$ | $5$ | $(1,3)(2,4,6,8)(5,7)$ | 
| 4E | $4,2,1^{2}$ | $8$ | $4$ | $4$ | $(2,4,6,8)(3,7)$ | 
| 4F | $4^{2}$ | $8$ | $4$ | $6$ | $(1,2,5,6)(3,8,7,4)$ | 
| 4G | $4^{2}$ | $16$ | $4$ | $6$ | $(1,2,3,4)(5,6,7,8)$ | 
| 4H | $4,2^{2}$ | $16$ | $4$ | $5$ | $(1,6,5,2)(3,4)(7,8)$ | 
| 8A | $8$ | $16$ | $8$ | $7$ | $(1,4,7,6,5,8,3,2)$ | 
Character table
| 1A | 2A | 2B | 2C | 2D | 2E | 2F | 2G | 2H | 2I | 2J | 4A | 4B | 4C | 4D | 4E | 4F | 4G | 4H | 8A | ||
| Size | 1 | 1 | 2 | 4 | 4 | 4 | 4 | 4 | 4 | 8 | 8 | 4 | 4 | 4 | 8 | 8 | 8 | 16 | 16 | 16 | |
| 2 P | 1A | 1A | 1A | 1A | 1A | 1A | 1A | 1A | 1A | 1A | 1A | 2B | 2B | 2A | 2B | 2B | 2A | 2G | 2H | 4C | |
| Type | |||||||||||||||||||||
| 128.928.1a | R | ||||||||||||||||||||
| 128.928.1b | R | ||||||||||||||||||||
| 128.928.1c | R | ||||||||||||||||||||
| 128.928.1d | R | ||||||||||||||||||||
| 128.928.1e | R | ||||||||||||||||||||
| 128.928.1f | R | ||||||||||||||||||||
| 128.928.1g | R | ||||||||||||||||||||
| 128.928.1h | R | ||||||||||||||||||||
| 128.928.2a | R | ||||||||||||||||||||
| 128.928.2b | R | ||||||||||||||||||||
| 128.928.2c | R | ||||||||||||||||||||
| 128.928.2d | R | ||||||||||||||||||||
| 128.928.2e | R | ||||||||||||||||||||
| 128.928.2f | R | ||||||||||||||||||||
| 128.928.4a | R | ||||||||||||||||||||
| 128.928.4b | R | ||||||||||||||||||||
| 128.928.4c | R | ||||||||||||||||||||
| 128.928.4d | R | ||||||||||||||||||||
| 128.928.4e | R | ||||||||||||||||||||
| 128.928.4f | R | 
Regular extensions
| $f_{ 1 } =$ | $x^{8} + 2 x^{6} - x^{2} + t$ | 
