Group action invariants
| Degree $n$ : | $8$ | |
| Transitive number $t$ : | $43$ | |
| Group : | $\PGL(2,7)$ | |
| CHM label : | $L(8):2=PGL(2,7)$ | |
| Parity: | $-1$ | |
| Primitive: | Yes | |
| Nilpotency class: | $-1$ (not nilpotent) | |
| Generators: | (1,3,2,6,4,5), (1,2,3,4,5,6,8), (1,6)(2,3)(4,5)(7,8) | |
| $|\Aut(F/K)|$: | $1$ |
Low degree resolvents
|G/N| Galois groups for stem field(s) 2: $C_2$ Resolvents shown for degrees $\leq 47$
Subfields
Degree 2: None
Degree 4: None
Low degree siblings
14T16, 16T713, 21T20, 24T707, 28T42, 28T46, 42T81, 42T82, 42T83Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy Classes
| Cycle Type | Size | Order | Representative |
| $ 1, 1, 1, 1, 1, 1, 1, 1 $ | $1$ | $1$ | $()$ |
| $ 2, 2, 2, 1, 1 $ | $28$ | $2$ | $(3,4)(5,7)(6,8)$ |
| $ 6, 1, 1 $ | $56$ | $6$ | $(3,5,8,4,7,6)$ |
| $ 3, 3, 1, 1 $ | $56$ | $3$ | $(3,7,8)(4,5,6)$ |
| $ 7, 1 $ | $48$ | $7$ | $(2,3,7,6,8,5,4)$ |
| $ 2, 2, 2, 2 $ | $21$ | $2$ | $(1,2)(3,4)(5,8)(6,7)$ |
| $ 8 $ | $42$ | $8$ | $(1,2,3,6,4,7,8,5)$ |
| $ 4, 4 $ | $42$ | $4$ | $(1,2,3,7)(4,6,5,8)$ |
| $ 8 $ | $42$ | $8$ | $(1,2,3,8,6,7,5,4)$ |
Group invariants
| Order: | $336=2^{4} \cdot 3 \cdot 7$ | |
| Cyclic: | No | |
| Abelian: | No | |
| Solvable: | No | |
| GAP id: | [336, 208] |
| Character table: |
2 4 2 1 1 . 4 3 3 3
3 1 1 1 1 . . . . .
7 1 . . . 1 . . . .
1a 2a 6a 3a 7a 2b 8a 4a 8b
2P 1a 1a 3a 3a 7a 1a 4a 2b 4a
3P 1a 2a 2a 1a 7a 2b 8b 4a 8a
5P 1a 2a 6a 3a 7a 2b 8b 4a 8a
7P 1a 2a 6a 3a 1a 2b 8a 4a 8b
X.1 1 1 1 1 1 1 1 1 1
X.2 1 -1 -1 1 1 1 -1 1 -1
X.3 6 . . . -1 -2 . 2 .
X.4 6 . . . -1 2 A . -A
X.5 6 . . . -1 2 -A . A
X.6 7 -1 -1 1 . -1 1 -1 1
X.7 7 1 1 1 . -1 -1 -1 -1
X.8 8 -2 1 -1 1 . . . .
X.9 8 2 -1 -1 1 . . . .
A = -E(8)+E(8)^3
= -Sqrt(2) = -r2
|