Properties

Label 8T6
Degree $8$
Order $16$
Cyclic no
Abelian no
Solvable yes
Primitive no
$p$-group yes
Group: $D_{8}$

Related objects

Downloads

Learn more

Show commands: Magma

magma: G := TransitiveGroup(8, 6);
 

Group action invariants

Degree $n$:  $8$
magma: t, n := TransitiveGroupIdentification(G); n;
 
Transitive number $t$:  $6$
magma: t, n := TransitiveGroupIdentification(G); t;
 
Group:  $D_{8}$
CHM label:   $D(8)$
Parity:  $-1$
magma: IsEven(G);
 
Primitive:  no
magma: IsPrimitive(G);
 
magma: NilpotencyClass(G);
 
$\card{\Aut(F/K)}$:  $2$
magma: Order(Centralizer(SymmetricGroup(n), G));
 
Generators:  (1,2,3,4,5,6,7,8), (1,6)(2,5)(3,4)(7,8)
magma: Generators(G);
 

Low degree resolvents

$\card{(G/N)}$Galois groups for stem field(s)
$2$:  $C_2$ x 3
$4$:  $C_2^2$
$8$:  $D_{4}$

Resolvents shown for degrees $\leq 47$

Subfields

Degree 2: $C_2$

Degree 4: $D_{4}$

Low degree siblings

8T6, 16T13

Siblings are shown with degree $\leq 47$

A number field with this Galois group has no arithmetically equivalent fields.

Conjugacy classes

LabelCycle TypeSizeOrderIndexRepresentative
1A $1^{8}$ $1$ $1$ $0$ $()$
2A $2^{4}$ $1$ $2$ $4$ $(1,5)(2,6)(3,7)(4,8)$
2B $2^{4}$ $4$ $2$ $4$ $(1,2)(3,8)(4,7)(5,6)$
2C $2^{3},1^{2}$ $4$ $2$ $3$ $(2,8)(3,7)(4,6)$
4A $4^{2}$ $2$ $4$ $6$ $(1,3,5,7)(2,4,6,8)$
8A1 $8$ $2$ $8$ $7$ $(1,2,3,4,5,6,7,8)$
8A3 $8$ $2$ $8$ $7$ $(1,6,3,8,5,2,7,4)$

Malle's constant $a(G)$:     $1/3$

magma: ConjugacyClasses(G);
 

Group invariants

Order:  $16=2^{4}$
magma: Order(G);
 
Cyclic:  no
magma: IsCyclic(G);
 
Abelian:  no
magma: IsAbelian(G);
 
Solvable:  yes
magma: IsSolvable(G);
 
Nilpotency class:  $3$
Label:  16.7
magma: IdentifyGroup(G);
 
Character table:

1A 2A 2B 2C 4A 8A1 8A3
Size 1 1 4 4 2 2 2
2 P 1A 1A 1A 1A 2A 4A 4A
Type
16.7.1a R 1 1 1 1 1 1 1
16.7.1b R 1 1 1 1 1 1 1
16.7.1c R 1 1 1 1 1 1 1
16.7.1d R 1 1 1 1 1 1 1
16.7.2a R 2 2 0 0 2 0 0
16.7.2b1 R 2 2 0 0 0 ζ81ζ8 ζ81+ζ8
16.7.2b2 R 2 2 0 0 0 ζ81+ζ8 ζ81ζ8

magma: CharacterTable(G);