Group action invariants
| Degree $n$ : | $8$ | |
| Transitive number $t$ : | $6$ | |
| Group : | $D_{8}$ | |
| CHM label : | $D(8)$ | |
| Parity: | $-1$ | |
| Primitive: | No | |
| Nilpotency class: | $3$ | |
| Generators: | (1,2,3,4,5,6,7,8), (1,6)(2,5)(3,4)(7,8) | |
| $|\Aut(F/K)|$: | $2$ |
Low degree resolvents
|G/N| Galois groups for stem field(s) 2: $C_2$ x 3 4: $C_2^2$ 8: $D_{4}$ Resolvents shown for degrees $\leq 47$
Subfields
Degree 2: $C_2$
Degree 4: $D_{4}$
Low degree siblings
8T6, 16T13Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy Classes
| Cycle Type | Size | Order | Representative |
| $ 1, 1, 1, 1, 1, 1, 1, 1 $ | $1$ | $1$ | $()$ |
| $ 2, 2, 2, 1, 1 $ | $4$ | $2$ | $(2,8)(3,7)(4,6)$ |
| $ 2, 2, 2, 2 $ | $4$ | $2$ | $(1,2)(3,8)(4,7)(5,6)$ |
| $ 8 $ | $2$ | $8$ | $(1,2,3,4,5,6,7,8)$ |
| $ 4, 4 $ | $2$ | $4$ | $(1,3,5,7)(2,4,6,8)$ |
| $ 8 $ | $2$ | $8$ | $(1,4,7,2,5,8,3,6)$ |
| $ 2, 2, 2, 2 $ | $1$ | $2$ | $(1,5)(2,6)(3,7)(4,8)$ |
Group invariants
| Order: | $16=2^{4}$ | |
| Cyclic: | No | |
| Abelian: | No | |
| Solvable: | Yes | |
| GAP id: | [16, 7] |
| Character table: |
2 4 2 2 3 3 3 4
1a 2a 2b 8a 4a 8b 2c
2P 1a 1a 1a 4a 2c 4a 1a
3P 1a 2a 2b 8b 4a 8a 2c
5P 1a 2a 2b 8b 4a 8a 2c
7P 1a 2a 2b 8a 4a 8b 2c
X.1 1 1 1 1 1 1 1
X.2 1 -1 -1 1 1 1 1
X.3 1 -1 1 -1 1 -1 1
X.4 1 1 -1 -1 1 -1 1
X.5 2 . . . -2 . 2
X.6 2 . . A . -A -2
X.7 2 . . -A . A -2
A = -E(8)+E(8)^3
= -Sqrt(2) = -r2
|