Show commands:
Magma
magma: G := TransitiveGroup(8, 6);
Group action invariants
Degree $n$: | $8$ | magma: t, n := TransitiveGroupIdentification(G); n;
| |
Transitive number $t$: | $6$ | magma: t, n := TransitiveGroupIdentification(G); t;
| |
Group: | $D_{8}$ | ||
CHM label: | $D(8)$ | ||
Parity: | $-1$ | magma: IsEven(G);
| |
Primitive: | no | magma: IsPrimitive(G);
| magma: NilpotencyClass(G);
|
$\card{\Aut(F/K)}$: | $2$ | magma: Order(Centralizer(SymmetricGroup(n), G));
| |
Generators: | (1,2,3,4,5,6,7,8), (1,6)(2,5)(3,4)(7,8) | magma: Generators(G);
|
Low degree resolvents
$\card{(G/N)}$ Galois groups for stem field(s) $2$: $C_2$ x 3 $4$: $C_2^2$ $8$: $D_{4}$ Resolvents shown for degrees $\leq 47$
Subfields
Degree 2: $C_2$
Degree 4: $D_{4}$
Low degree siblings
8T6, 16T13Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy classes
Label | Cycle Type | Size | Order | Index | Representative |
1A | $1^{8}$ | $1$ | $1$ | $0$ | $()$ |
2A | $2^{4}$ | $1$ | $2$ | $4$ | $(1,5)(2,6)(3,7)(4,8)$ |
2B | $2^{4}$ | $4$ | $2$ | $4$ | $(1,2)(3,8)(4,7)(5,6)$ |
2C | $2^{3},1^{2}$ | $4$ | $2$ | $3$ | $(2,8)(3,7)(4,6)$ |
4A | $4^{2}$ | $2$ | $4$ | $6$ | $(1,3,5,7)(2,4,6,8)$ |
8A1 | $8$ | $2$ | $8$ | $7$ | $(1,2,3,4,5,6,7,8)$ |
8A3 | $8$ | $2$ | $8$ | $7$ | $(1,6,3,8,5,2,7,4)$ |
Malle's constant $a(G)$: $1/3$
magma: ConjugacyClasses(G);
Group invariants
Order: | $16=2^{4}$ | magma: Order(G);
| |
Cyclic: | no | magma: IsCyclic(G);
| |
Abelian: | no | magma: IsAbelian(G);
| |
Solvable: | yes | magma: IsSolvable(G);
| |
Nilpotency class: | $3$ | ||
Label: | 16.7 | magma: IdentifyGroup(G);
| |
Character table: |
1A | 2A | 2B | 2C | 4A | 8A1 | 8A3 | ||
Size | 1 | 1 | 4 | 4 | 2 | 2 | 2 | |
2 P | 1A | 1A | 1A | 1A | 2A | 4A | 4A | |
Type | ||||||||
16.7.1a | R | |||||||
16.7.1b | R | |||||||
16.7.1c | R | |||||||
16.7.1d | R | |||||||
16.7.2a | R | |||||||
16.7.2b1 | R | |||||||
16.7.2b2 | R |
magma: CharacterTable(G);