Properties

Label 8T1
8T1 1 2 1->2 3 2->3 4 3->4 5 4->5 6 5->6 7 6->7 8 7->8 8->1
Degree $8$
Order $8$
Cyclic yes
Abelian yes
Solvable yes
Primitive no
$p$-group yes
Group: $C_8$

Related objects

Downloads

Learn more

Show commands: Magma

Copy content magma:G := TransitiveGroup(8, 1);
 

Group invariants

Abstract group:  $C_8$
Copy content magma:IdentifyGroup(G);
 
Order:  $8=2^{3}$
Copy content magma:Order(G);
 
Cyclic:  yes
Copy content magma:IsCyclic(G);
 
Abelian:  yes
Copy content magma:IsAbelian(G);
 
Solvable:  yes
Copy content magma:IsSolvable(G);
 
Nilpotency class:  $1$
Copy content magma:NilpotencyClass(G);
 

Group action invariants

Degree $n$:  $8$
Copy content magma:t, n := TransitiveGroupIdentification(G); n;
 
Transitive number $t$:  $1$
Copy content magma:t, n := TransitiveGroupIdentification(G); t;
 
CHM label:   $C(8)=8$
Parity:  $-1$
Copy content magma:IsEven(G);
 
Primitive:  no
Copy content magma:IsPrimitive(G);
 
$\card{\Aut(F/K)}$:  $8$
Copy content magma:Order(Centralizer(SymmetricGroup(n), G));
 
Generators:  $(1,2,3,4,5,6,7,8)$
Copy content magma:Generators(G);
 

Low degree resolvents

$\card{(G/N)}$Galois groups for stem field(s)
$2$:  $C_2$
$4$:  $C_4$

Resolvents shown for degrees $\leq 47$

Subfields

Degree 2: $C_2$

Degree 4: $C_4$

Low degree siblings

There are no siblings with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.

Conjugacy classes

LabelCycle TypeSizeOrderIndexRepresentative
1A $1^{8}$ $1$ $1$ $0$ $()$
2A $2^{4}$ $1$ $2$ $4$ $(1,5)(2,6)(3,7)(4,8)$
4A1 $4^{2}$ $1$ $4$ $6$ $(1,3,5,7)(2,4,6,8)$
4A-1 $4^{2}$ $1$ $4$ $6$ $(1,7,5,3)(2,8,6,4)$
8A1 $8$ $1$ $8$ $7$ $(1,2,3,4,5,6,7,8)$
8A-1 $8$ $1$ $8$ $7$ $(1,8,7,6,5,4,3,2)$
8A3 $8$ $1$ $8$ $7$ $(1,4,7,2,5,8,3,6)$
8A-3 $8$ $1$ $8$ $7$ $(1,6,3,8,5,2,7,4)$

Malle's constant $a(G)$:     $1/4$

Copy content magma:ConjugacyClasses(G);
 

Character table

1A 2A 4A1 4A-1 8A1 8A-1 8A3 8A-3
Size 1 1 1 1 1 1 1 1
2 P 1A 1A 2A 2A 4A1 4A-1 4A-1 4A1
Type
8.1.1a R 1 1 1 1 1 1 1 1
8.1.1b R 1 1 1 1 1 1 1 1
8.1.1c1 C 1 1 1 1 i i i i
8.1.1c2 C 1 1 1 1 i i i i
8.1.1d1 C 1 1 ζ82 ζ82 ζ83 ζ83 ζ8 ζ8
8.1.1d2 C 1 1 ζ82 ζ82 ζ8 ζ8 ζ83 ζ83
8.1.1d3 C 1 1 ζ82 ζ82 ζ83 ζ83 ζ8 ζ8
8.1.1d4 C 1 1 ζ82 ζ82 ζ8 ζ8 ζ83 ζ83

Copy content magma:CharacterTable(G);
 

Regular extensions

$f_{ 1 } =$ $t^{2} x^{8} + \left(4 t^{4} + 4\right) x^{6} + \left(2 t^{6} + 8 t^{4} + 2 t^{2} + 8\right) x^{4} + \left(4 t^{6} + 4 t^{4} + 4 t^{2} + 4\right) x^{2} + \left(t^{6} + t^{2}\right)$ Copy content Toggle raw display