Show commands: Magma
Group invariants
| Abstract group: | $C_8$ |
| |
| Order: | $8=2^{3}$ |
| |
| Cyclic: | yes |
| |
| Abelian: | yes |
| |
| Solvable: | yes |
| |
| Nilpotency class: | $1$ |
|
Group action invariants
| Degree $n$: | $8$ |
| |
| Transitive number $t$: | $1$ |
| |
| CHM label: | $C(8)=8$ | ||
| Parity: | $-1$ |
| |
| Primitive: | no |
| |
| $\card{\Aut(F/K)}$: | $8$ |
| |
| Generators: | $(1,2,3,4,5,6,7,8)$ |
|
Low degree resolvents
$\card{(G/N)}$ Galois groups for stem field(s) $2$: $C_2$ $4$: $C_4$ Resolvents shown for degrees $\leq 47$
Subfields
Degree 2: $C_2$
Degree 4: $C_4$
Low degree siblings
There are no siblings with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy classes
| Label | Cycle Type | Size | Order | Index | Representative |
| 1A | $1^{8}$ | $1$ | $1$ | $0$ | $()$ |
| 2A | $2^{4}$ | $1$ | $2$ | $4$ | $(1,5)(2,6)(3,7)(4,8)$ |
| 4A1 | $4^{2}$ | $1$ | $4$ | $6$ | $(1,3,5,7)(2,4,6,8)$ |
| 4A-1 | $4^{2}$ | $1$ | $4$ | $6$ | $(1,7,5,3)(2,8,6,4)$ |
| 8A1 | $8$ | $1$ | $8$ | $7$ | $(1,2,3,4,5,6,7,8)$ |
| 8A-1 | $8$ | $1$ | $8$ | $7$ | $(1,8,7,6,5,4,3,2)$ |
| 8A3 | $8$ | $1$ | $8$ | $7$ | $(1,4,7,2,5,8,3,6)$ |
| 8A-3 | $8$ | $1$ | $8$ | $7$ | $(1,6,3,8,5,2,7,4)$ |
Malle's constant $a(G)$: $1/4$
Character table
| 1A | 2A | 4A1 | 4A-1 | 8A1 | 8A-1 | 8A3 | 8A-3 | ||
| Size | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | |
| 2 P | 1A | 1A | 2A | 2A | 4A1 | 4A-1 | 4A-1 | 4A1 | |
| Type | |||||||||
| 8.1.1a | R | ||||||||
| 8.1.1b | R | ||||||||
| 8.1.1c1 | C | ||||||||
| 8.1.1c2 | C | ||||||||
| 8.1.1d1 | C | ||||||||
| 8.1.1d2 | C | ||||||||
| 8.1.1d3 | C | ||||||||
| 8.1.1d4 | C |
Regular extensions
| $f_{ 1 } =$ |
$t^{2} x^{8} + \left(4 t^{4} + 4\right) x^{6} + \left(2 t^{6} + 8 t^{4} + 2 t^{2} + 8\right) x^{4} + \left(4 t^{6} + 4 t^{4} + 4 t^{2} + 4\right) x^{2} + \left(t^{6} + t^{2}\right)$
|