Group action invariants
| Degree $n$ : | $8$ | |
| Transitive number $t$ : | $28$ | |
| Group : | $(((C_4 \times C_2): C_2):C_2):C_2$ | |
| CHM label : | $1/2[2^{4}]dD(4)$ | |
| Parity: | $-1$ | |
| Primitive: | No | |
| Nilpotency class: | $4$ | |
| Generators: | (1,2,3,4,5,6,7,8), (2,6)(3,7), (1,3)(5,7) | |
| $|\Aut(F/K)|$: | $2$ |
Low degree resolvents
|G/N| Galois groups for stem field(s) 2: $C_2$ x 3 4: $C_4$ x 2, $C_2^2$ 8: $D_{4}$ x 2, $C_4\times C_2$ 16: $C_2^2:C_4$ 32: $C_2^3 : C_4 $ Resolvents shown for degrees $\leq 47$
Subfields
Degree 2: $C_2$
Degree 4: $D_{4}$
Low degree siblings
8T27 x 2, 8T28, 16T130, 16T157 x 2, 16T158 x 2, 16T159 x 2, 16T166, 16T170, 16T171, 16T172, 32T138 x 2, 32T139, 32T170, 32T176Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy Classes
| Cycle Type | Size | Order | Representative |
| $ 1, 1, 1, 1, 1, 1, 1, 1 $ | $1$ | $1$ | $()$ |
| $ 2, 2, 1, 1, 1, 1 $ | $4$ | $2$ | $(3,7)(4,8)$ |
| $ 2, 2, 1, 1, 1, 1 $ | $4$ | $2$ | $(2,4)(6,8)$ |
| $ 4, 2, 1, 1 $ | $8$ | $4$ | $(2,4,6,8)(3,7)$ |
| $ 2, 2, 1, 1, 1, 1 $ | $2$ | $2$ | $(2,6)(4,8)$ |
| $ 4, 2, 2 $ | $8$ | $4$ | $(1,2)(3,4,7,8)(5,6)$ |
| $ 4, 2, 2 $ | $8$ | $4$ | $(1,2)(3,8,7,4)(5,6)$ |
| $ 8 $ | $8$ | $8$ | $(1,2,3,4,5,6,7,8)$ |
| $ 8 $ | $8$ | $8$ | $(1,2,3,8,5,6,7,4)$ |
| $ 2, 2, 2, 2 $ | $4$ | $2$ | $(1,3)(2,4)(5,7)(6,8)$ |
| $ 4, 4 $ | $4$ | $4$ | $(1,3,5,7)(2,4,6,8)$ |
| $ 2, 2, 2, 2 $ | $4$ | $2$ | $(1,3)(2,6)(4,8)(5,7)$ |
| $ 2, 2, 2, 2 $ | $1$ | $2$ | $(1,5)(2,6)(3,7)(4,8)$ |
Group invariants
| Order: | $64=2^{6}$ | |
| Cyclic: | No | |
| Abelian: | No | |
| Solvable: | Yes | |
| GAP id: | [64, 32] |
| Character table: |
2 6 4 4 3 5 3 3 3 3 4 4 4 6
1a 2a 2b 4a 2c 4b 4c 8a 8b 2d 4d 2e 2f
2P 1a 1a 1a 2c 1a 2a 2a 4d 4d 1a 2f 1a 1a
3P 1a 2a 2b 4a 2c 4c 4b 8b 8a 2d 4d 2e 2f
5P 1a 2a 2b 4a 2c 4b 4c 8a 8b 2d 4d 2e 2f
7P 1a 2a 2b 4a 2c 4c 4b 8b 8a 2d 4d 2e 2f
X.1 1 1 1 1 1 1 1 1 1 1 1 1 1
X.2 1 1 -1 -1 1 -1 -1 1 1 1 1 -1 1
X.3 1 1 -1 -1 1 1 1 -1 -1 1 1 -1 1
X.4 1 1 1 1 1 -1 -1 -1 -1 1 1 1 1
X.5 1 -1 -1 1 1 A -A -A A 1 -1 -1 1
X.6 1 -1 -1 1 1 -A A A -A 1 -1 -1 1
X.7 1 -1 1 -1 1 A -A A -A 1 -1 1 1
X.8 1 -1 1 -1 1 -A A -A A 1 -1 1 1
X.9 2 -2 . . 2 . . . . -2 2 . 2
X.10 2 2 . . 2 . . . . -2 -2 . 2
X.11 4 . . . -4 . . . . . . . 4
X.12 4 . -2 . . . . . . . . 2 -4
X.13 4 . 2 . . . . . . . . -2 -4
A = -E(4)
= -Sqrt(-1) = -i
|