Show commands: Magma
Group invariants
| Abstract group: | $(((C_4 \times C_2): C_2):C_2):C_2$ |
| |
| Order: | $64=2^{6}$ |
| |
| Cyclic: | no |
| |
| Abelian: | no |
| |
| Solvable: | yes |
| |
| Nilpotency class: | $4$ |
|
Group action invariants
| Degree $n$: | $8$ |
| |
| Transitive number $t$: | $28$ |
| |
| CHM label: | $1/2[2^{4}]dD(4)$ | ||
| Parity: | $-1$ |
| |
| Primitive: | no |
| |
| $\card{\Aut(F/K)}$: | $2$ |
| |
| Generators: | $(1,2,3,4,5,6,7,8)$, $(2,6)(3,7)$, $(1,3)(5,7)$ |
|
Low degree resolvents
$\card{(G/N)}$ Galois groups for stem field(s) $2$: $C_2$ x 3 $4$: $C_4$ x 2, $C_2^2$ $8$: $D_{4}$ x 2, $C_4\times C_2$ $16$: $C_2^2:C_4$ $32$: $C_2^3 : C_4 $ Resolvents shown for degrees $\leq 47$
Subfields
Degree 2: $C_2$
Degree 4: $D_{4}$
Low degree siblings
8T27 x 2, 8T28, 16T130, 16T157 x 2, 16T158 x 2, 16T159 x 2, 16T166, 16T170, 16T171, 16T172, 32T138 x 2, 32T139, 32T170, 32T176Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy classes
| Label | Cycle Type | Size | Order | Index | Representative |
| 1A | $1^{8}$ | $1$ | $1$ | $0$ | $()$ |
| 2A | $2^{4}$ | $1$ | $2$ | $4$ | $(1,5)(2,6)(3,7)(4,8)$ |
| 2B | $2^{2},1^{4}$ | $2$ | $2$ | $2$ | $(1,5)(3,7)$ |
| 2C | $2^{2},1^{4}$ | $4$ | $2$ | $2$ | $(1,3)(5,7)$ |
| 2D | $2^{4}$ | $4$ | $2$ | $4$ | $(1,3)(2,4)(5,7)(6,8)$ |
| 2E | $2^{4}$ | $4$ | $2$ | $4$ | $(1,5)(2,4)(3,7)(6,8)$ |
| 2F | $2^{2},1^{4}$ | $4$ | $2$ | $2$ | $(3,7)(4,8)$ |
| 4A | $4^{2}$ | $4$ | $4$ | $6$ | $(1,7,5,3)(2,8,6,4)$ |
| 4B | $4,2,1^{2}$ | $8$ | $4$ | $4$ | $(1,7,5,3)(4,8)$ |
| 4C1 | $4,2^{2}$ | $8$ | $4$ | $5$ | $(1,2)(3,8,7,4)(5,6)$ |
| 4C-1 | $4,2^{2}$ | $8$ | $4$ | $5$ | $(1,2)(3,4,7,8)(5,6)$ |
| 8A1 | $8$ | $8$ | $8$ | $7$ | $(1,8,7,6,5,4,3,2)$ |
| 8A-1 | $8$ | $8$ | $8$ | $7$ | $(1,4,7,6,5,8,3,2)$ |
Malle's constant $a(G)$: $1/2$
Character table
| 1A | 2A | 2B | 2C | 2D | 2E | 2F | 4A | 4B | 4C1 | 4C-1 | 8A1 | 8A-1 | ||
| Size | 1 | 1 | 2 | 4 | 4 | 4 | 4 | 4 | 8 | 8 | 8 | 8 | 8 | |
| 2 P | 1A | 1A | 1A | 1A | 1A | 1A | 1A | 2A | 2B | 2F | 2F | 4A | 4A | |
| Type | ||||||||||||||
| 64.32.1a | R | |||||||||||||
| 64.32.1b | R | |||||||||||||
| 64.32.1c | R | |||||||||||||
| 64.32.1d | R | |||||||||||||
| 64.32.1e1 | C | |||||||||||||
| 64.32.1e2 | C | |||||||||||||
| 64.32.1f1 | C | |||||||||||||
| 64.32.1f2 | C | |||||||||||||
| 64.32.2a | R | |||||||||||||
| 64.32.2b | R | |||||||||||||
| 64.32.4a | R | |||||||||||||
| 64.32.4b | R | |||||||||||||
| 64.32.4c | R |
Regular extensions
| $f_{ 1 } =$ |
$x^{8} - t x^{7} - x^{6} + t x^{5} + 4 x^{4} - t x^{3} - x^{2} + t x + 1$
|