Results (displaying matches 1-50 of 63) Next
| Label | Name | Order | Parity | Solvable | Subfields | Low Degree Siblings |
|---|---|---|---|---|---|---|
| 14T1 | $C_{14}$ | 14 | -1 | Yes | $C_2$, $C_7$ | |
| 14T2 | $D_{7}$ | 14 | -1 | Yes | $C_2$, $D_{7}$ | 7T2 |
| 14T3 | $D_{14}$ | 28 | -1 | Yes | $C_2$, $D_{7}$ | 14T3, 28T4 |
| 14T4 | $F_7$ | 42 | -1 | Yes | $C_2$, $F_7$ | 7T4, 21T4, 42T4 |
| 14T5 | $(C_7:C_3) \times C_2$ | 42 | -1 | Yes | $C_2$, $C_7:C_3$ | 42T2 |
| 14T6 | $F_8$ | 56 | 1 | Yes | $C_7$ | 8T25, 28T11 |
| 14T7 | $F_7 \times C_2$ | 84 | -1 | Yes | $C_2$, $F_7$ | 14T7, 28T15, 42T10 x 2 |
| 14T8 | $C_7 \wr C_2$ | 98 | -1 | Yes | $C_2$ | 14T8 x 2 |
| 14T9 | $C_2\times F_8$ | 112 | -1 | Yes | $C_7$ | 16T196, 28T19 x 3, 28T20 |
| 14T10 | $\PSL(2,7)$ | 168 | 1 | No | $\GL(3,2)$ | 7T5 x 2, 8T37, 14T10, 21T14, 24T284, 28T32, 42T37, 42T38 x 2 |
| 14T11 | $F_8:C_3$ | 168 | 1 | Yes | $C_7:C_3$ | 8T36, 24T283, 28T27, 42T26 |
| 14T12 | $C_7:D_7.C_2$ | 196 | 1 | Yes | $C_2$ | 14T12 x 3, 28T35 x 4 |
| 14T13 | $D_7^2$ | 196 | -1 | Yes | $C_2$ | 14T13 x 2, 28T36 x 3 |
| 14T14 | $C_7^2:C_6$ | 294 | -1 | Yes | $C_2$ | 14T14 x 2, 42T61 x 3 |
| 14T15 | $C_7^2:S_3$ | 294 | -1 | Yes | $C_2$ | 21T17, 21T18, 42T56, 42T57, 42T62 |
| 14T16 | $SO(3,7)$ | 336 | -1 | No | $C_2$ | 8T43, 16T713, 21T20, 24T707, 28T42, 28T46, 42T81, 42T82, 42T83 |
| 14T17 | $C_2\times \PSL(2,7)$ | 336 | -1 | No | $\GL(3,2)$ | 14T17, 14T19 x 2, 16T714, 28T43 x 2, 42T78, 42T79, 42T80 x 2 |
| 14T18 | $C_2\times F_8:C_3$ | 336 | -1 | Yes | $C_7:C_3$ | 16T712, 28T44, 42T67 |
| 14T19 | $\GL(3,2) \times C_2$ | 336 | -1 | No | $C_2$, $\GL(3,2)$ | 14T17 x 2, 14T19, 16T714, 28T43 x 2, 42T78, 42T79, 42T80 x 2 |
| 14T20 | $D_7 \wr C_2$ | 392 | -1 | Yes | $C_2$ | 14T20, 28T53 x 2, 28T54 x 2, 28T55 x 2, 28T57 |
| 14T21 | $C_2^3:F_8$ | 448 | 1 | Yes | $C_7$ | 14T21 x 6, 28T62 x 21, 28T63 x 14, 28T64 x 42, 28T65 x 7, 28T66 x 7 |
| 14T22 | [1/6_-.F_42(7)^2]2_2 | 588 | 1 | Yes | $C_2$ | 28T75, 42T119, 42T125 |
| 14T23 | [1/6_+.F_42(7)^2]2_2 | 588 | 1 | Yes | $C_2$ | 14T23 x 3, 28T76 x 4, 42T120 x 4 |
| 14T24 | [7^2:6]2 | 588 | -1 | Yes | $C_2$ | 14T24 x 2, 28T77 x 3, 42T121 x 3 |
| 14T25 | [7^2:6_3]2 | 588 | -1 | Yes | $C_2$ | 21T23 x 2, 28T78, 42T110 x 2, 42T111 x 2, 42T112 x 2, 42T122 |
| 14T26 | 1/2[1/2.F_42(7)^2]2 | 882 | -1 | Yes | $C_2$ | 21T25, 21T26, 42T143, 42T144, 42T152, 42T153, 42T154, 42T155 |
| 14T27 | 2^7[1/2]D(7) | 896 | -1 | Yes | $D_{7}$ | 14T27 x 6, 14T28 x 7, 16T1078, 28T98, 28T105 x 7, 28T106 x 21, 28T107 x 21, 28T108 x 7, 28T109 x 7 |
| 14T28 | [2^6]D(7) | 896 | 1 | Yes | $D_{7}$ | 14T27 x 7, 14T28 x 6, 16T1078, 28T98, 28T105 x 7, 28T106 x 21, 28T107 x 21, 28T108 x 7, 28T109 x 7 |
| 14T29 | $C_2 \wr C_7$ | 896 | -1 | Yes | $C_7$ | 14T29 x 6, 28T104 x 7, 28T110 x 21, 28T111 x 42, 28T112 x 42, 28T113 x 21, 28T114 x 42, 28T115 x 42, 28T116 x 14, 28T117 x 42, 28T118 x 7 |
| 14T30 | $\PSL(2,13)$ | 1092 | 1 | No | 28T120, 42T176 | |
| 14T31 | [D(7)^2:3_3]2 | 1176 | -1 | Yes | $C_2$ | 28T133, 28T134, 28T135, 42T194, 42T196 |
| 14T32 | [D(7)^2:3]2 | 1176 | -1 | Yes | $C_2$ | 14T32, 28T136 x 2, 28T137 x 2, 28T138 x 2, 28T143, 42T195 x 2 |
| 14T33 | 2^3`L_7(14) | 1344 | 1 | No | $\GL(3,2)$ | 14T33, 28T152, 28T158 x 2, 42T208 x 2, 42T209 x 2 |
| 14T34 | 2^3:L_7(14)=[2^3]L(7)=[2^3]L(3,2) | 1344 | 1 | No | $\GL(3,2)$ | 8T48 x 2, 14T34, 28T153, 28T159 x 2, 42T210 x 2, 42T211 x 2 |
| 14T35 | [2^6]F_21(7) | 1344 | 1 | Yes | $C_7:C_3$ | 28T154, 28T155 x 2, 28T157, 42T202, 42T204, 42T205 |
| 14T36 | 1/2[F_42(7)^2]2 | 1764 | 1 | Yes | $C_2$ | 28T169, 42T248, 42T249, 42T250, 42T251, 42T257 |
| 14T37 | [1/2.F_42(7)^2]2 | 1764 | -1 | Yes | $C_2$ | 21T29 x 2, 28T170, 42T223 x 2, 42T224 x 2, 42T225 x 2, 42T252, 42T253, 42T254, 42T255 |
| 14T38 | [2^7]D(7)=2wrD(7) | 1792 | -1 | Yes | $D_{7}$ | 14T38 x 13, 28T175, 28T185 x 21, 28T186 x 7, 28T193 x 7, 28T194 x 42, 28T195 x 42, 28T196 x 14, 28T197 x 14, 32T97728 |
| 14T39 | $\PGL(2,13)$ | 2184 | -1 | No | 28T201, 42T284 | |
| 14T40 | 1/2[2^7]F_42(7) | 2688 | -1 | Yes | $F_7$ | 14T41, 16T1502, 28T215, 28T227, 28T228, 28T237, 42T314, 42T315, 42T316, 42T317, 42T318, 42T319 |
| 14T41 | [2^6]F_42(7) | 2688 | 1 | Yes | $F_7$ | 14T40, 16T1502, 28T215, 28T227, 28T228, 28T237, 42T314, 42T315, 42T316, 42T317, 42T318, 42T319 |
| 14T42 | 2^4`L_7(14) | 2688 | -1 | No | $\GL(3,2)$ | 14T42, 28T229 x 2, 28T230, 28T231 x 2, 42T327 x 2, 42T330 x 2 |
| 14T43 | 2^4:L_7(14)=[2^4]L(7) | 2688 | -1 | No | $\GL(3,2)$ | 14T43, 16T1504 x 2, 28T232 x 2, 28T233, 28T234 x 2, 42T328 x 2, 42T329 x 2 |
| 14T44 | [2^7]F_21(7)=2wrF_21(7) | 2688 | -1 | Yes | $C_7:C_3$ | 28T226, 28T235 x 2, 28T236, 42T309, 42T310, 42T311 |
| 14T45 | [F_42(7)^2]2=F_42(7)wr2 | 3528 | -1 | Yes | $C_2$ | 28T251, 28T252, 28T253, 42T368, 42T369, 42T370, 42T371, 42T372 |
| 14T46 | 2[1/2]S(7) | 5040 | -1 | No | $C_2$, $S_7$ | 7T7, 21T38, 30T565, 35T31, 42T411, 42T412, 42T413, 42T418 |
| 14T47 | $A_7\times C_2$ | 5040 | -1 | No | $C_2$, $A_7$ | 30T566 x 2, 42T409, 42T410 |
| 14T48 | [2^7]F_42(7)=2wrF_42(7) | 5376 | -1 | Yes | $F_7$ | 14T48, 28T287, 28T308, 28T315, 28T316 x 2, 28T317 x 2, 32T397084, 42T448 x 2, 42T449 x 2, 42T450 x 2 |
| 14T49 | $S_7\times C_2$ | 10080 | -1 | No | $C_2$, $S_7$ | 14T49, 28T363, 42T549 x 2, 42T550 x 2 |
| 14T50 | [2^6]L(7) | 10752 | 1 | No | $\GL(3,2)$ | 14T50, 28T388, 28T390 x 2, 42T613 x 2, 42T614 x 2, 42T615 x 2, 42T616 x 2 |
Results are complete for degrees $\leq 23$.