Group action invariants
| Degree $n$ : | $14$ | |
| Transitive number $t$ : | $16$ | |
| Group : | $SO(3,7)$ | |
| CHM label : | $L_{7}:2(14)=[L(7)_%]2$ | |
| Parity: | $-1$ | |
| Primitive: | No | |
| Nilpotency class: | $-1$ (not nilpotent) | |
| Generators: | (1,13,11,9,7,5,3)(2,4,6,8,10,12,14), (1,9,11)(2,4,8)(3,13,5)(6,12,10), (1,8)(2,9)(3,10)(4,11)(5,12)(6,13)(7,14), (2,4)(5,13)(6,12)(9,11) | |
| $|\Aut(F/K)|$: | $1$ |
Low degree resolvents
|G/N| Galois groups for stem field(s) 2: $C_2$ Resolvents shown for degrees $\leq 47$
Subfields
Degree 2: $C_2$
Degree 7: None
Low degree siblings
8T43, 16T713, 21T20, 24T707, 28T42, 28T46, 42T81, 42T82, 42T83Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy Classes
| Cycle Type | Size | Order | Representative |
| $ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ | $1$ | $1$ | $()$ |
| $ 2, 2, 2, 2, 1, 1, 1, 1, 1, 1 $ | $21$ | $2$ | $( 5,11)( 6,12)( 9,13)(10,14)$ |
| $ 3, 3, 3, 3, 1, 1 $ | $56$ | $3$ | $( 3, 5,11)( 4,12, 6)( 7,13, 9)( 8,10,14)$ |
| $ 4, 4, 2, 2, 1, 1 $ | $42$ | $4$ | $( 2, 4,12, 6)( 3, 9, 7,11)( 5,13)( 8,14)$ |
| $ 2, 2, 2, 2, 2, 2, 2 $ | $28$ | $2$ | $( 1, 2)( 3, 4)( 5, 6)( 7, 8)( 9,10)(11,12)(13,14)$ |
| $ 6, 6, 2 $ | $56$ | $6$ | $( 1, 2)( 3, 6, 5, 4,11,12)( 7,14,13, 8, 9,10)$ |
| $ 8, 4, 2 $ | $42$ | $8$ | $( 1, 2, 3, 4)( 5,10,13,12,11,14, 9, 6)( 7, 8)$ |
| $ 8, 4, 2 $ | $42$ | $8$ | $( 1, 2, 3, 4)( 5,14,13, 6,11,10, 9,12)( 7, 8)$ |
| $ 7, 7 $ | $48$ | $7$ | $( 1, 3, 9,11,13, 7, 5)( 2, 4,10, 8, 6,14,12)$ |
Group invariants
| Order: | $336=2^{4} \cdot 3 \cdot 7$ | |
| Cyclic: | No | |
| Abelian: | No | |
| Solvable: | No | |
| GAP id: | [336, 208] |
| Character table: |
2 4 4 1 3 2 1 3 3 .
3 1 . 1 . 1 1 . . .
7 1 . . . . . . . 1
1a 2a 3a 4a 2b 6a 8a 8b 7a
2P 1a 1a 3a 2a 1a 3a 4a 4a 7a
3P 1a 2a 1a 4a 2b 2b 8b 8a 7a
5P 1a 2a 3a 4a 2b 6a 8b 8a 7a
7P 1a 2a 3a 4a 2b 6a 8a 8b 1a
X.1 1 1 1 1 1 1 1 1 1
X.2 1 1 1 1 -1 -1 -1 -1 1
X.3 6 -2 . 2 . . . . -1
X.4 6 2 . . . . A -A -1
X.5 6 2 . . . . -A A -1
X.6 7 -1 1 -1 -1 -1 1 1 .
X.7 7 -1 1 -1 1 1 -1 -1 .
X.8 8 . -1 . -2 1 . . 1
X.9 8 . -1 . 2 -1 . . 1
A = -E(8)+E(8)^3
= -Sqrt(2) = -r2
|