Group action invariants
| Degree $n$ : | $14$ | |
| Transitive number $t$ : | $27$ | |
| CHM label : | $2^{7}[1/2]D(7)$ | |
| Parity: | $-1$ | |
| Primitive: | No | |
| Nilpotency class: | $-1$ (not nilpotent) | |
| Generators: | (1,13)(2,12)(3,11)(4,10)(5,9)(6,8)(7,14), (2,9)(7,14), (1,3,5,7,9,11,13)(2,4,6,8,10,12,14) | |
| $|\Aut(F/K)|$: | $2$ |
Low degree resolvents
|G/N| Galois groups for stem field(s) 2: $C_2$ 14: $D_{7}$ Resolvents shown for degrees $\leq 47$
Subfields
Degree 2: None
Degree 7: $D_{7}$
Low degree siblings
14T27 x 6, 14T28 x 7, 16T1078, 28T98, 28T105 x 7, 28T106 x 21, 28T107 x 21, 28T108 x 7, 28T109 x 7Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy Classes
| Cycle Type | Size | Order | Representative |
| $ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ | $1$ | $1$ | $()$ |
| $ 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ | $7$ | $2$ | $( 2, 9)( 5,12)$ |
| $ 2, 2, 2, 2, 1, 1, 1, 1, 1, 1 $ | $7$ | $2$ | $( 2, 9)( 4,11)( 5,12)( 7,14)$ |
| $ 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ | $7$ | $2$ | $( 3,10)( 4,11)$ |
| $ 2, 2, 2, 2, 1, 1, 1, 1, 1, 1 $ | $7$ | $2$ | $( 2, 9)( 3,10)( 4,11)( 5,12)$ |
| $ 2, 2, 2, 2, 1, 1, 1, 1, 1, 1 $ | $14$ | $2$ | $( 3,10)( 5,12)( 6,13)( 7,14)$ |
| $ 2, 2, 2, 2, 1, 1, 1, 1, 1, 1 $ | $7$ | $2$ | $( 2, 9)( 3,10)( 6,13)( 7,14)$ |
| $ 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ | $7$ | $2$ | $( 1, 8)( 6,13)$ |
| $ 2, 2, 2, 2, 2, 2, 1, 1 $ | $7$ | $2$ | $( 1, 8)( 2, 9)( 4,11)( 5,12)( 6,13)( 7,14)$ |
| $ 7, 7 $ | $128$ | $7$ | $( 1,14, 6, 5,11,10, 2)( 3, 9, 8, 7,13,12, 4)$ |
| $ 7, 7 $ | $128$ | $7$ | $( 1, 5, 2, 6,10,14,11)( 3, 7, 4, 8,12, 9,13)$ |
| $ 7, 7 $ | $128$ | $7$ | $( 1, 6,11, 2,14, 5,10)( 3, 8,13, 4, 9, 7,12)$ |
| $ 4, 2, 2, 2, 2, 1, 1 $ | $56$ | $4$ | $( 1, 3)( 4,14)( 5,13,12, 6)( 7,11)( 8,10)$ |
| $ 2, 2, 2, 2, 2, 2, 2 $ | $56$ | $2$ | $( 1, 3)( 2, 9)( 4,14)( 5,13)( 6,12)( 7,11)( 8,10)$ |
| $ 4, 4, 4, 1, 1 $ | $56$ | $4$ | $( 1,10, 8, 3)( 4, 7,11,14)( 5,13,12, 6)$ |
| $ 4, 4, 2, 2, 2 $ | $56$ | $4$ | $( 1,10, 8, 3)( 2, 9)( 4, 7,11,14)( 5,13)( 6,12)$ |
| $ 4, 2, 2, 2, 2, 1, 1 $ | $56$ | $4$ | $( 1, 3, 8,10)( 4,14)( 5, 6)( 7,11)(12,13)$ |
| $ 4, 4, 2, 2, 2 $ | $56$ | $4$ | $( 1, 3, 8,10)( 2, 9)( 4,14)( 5, 6,12,13)( 7,11)$ |
| $ 4, 2, 2, 2, 2, 1, 1 $ | $56$ | $4$ | $( 1,10)( 3, 8)( 4, 7,11,14)( 5, 6)(12,13)$ |
| $ 4, 4, 2, 2, 2 $ | $56$ | $4$ | $( 1,10)( 2, 9)( 3, 8)( 4, 7,11,14)( 5, 6,12,13)$ |
Group invariants
| Order: | $896=2^{7} \cdot 7$ | |
| Cyclic: | No | |
| Abelian: | No | |
| Solvable: | Yes | |
| GAP id: | [896, 19344] |
| Character table: |
2 7 7 7 7 7 6 7 7 7 . . . 4 4 4 4 4 4 4 4
7 1 . . . . . . . . 1 1 1 . . . . . . . .
1a 2a 2b 2c 2d 2e 2f 2g 2h 7a 7b 7c 4a 2i 4b 4c 4d 4e 4f 4g
2P 1a 1a 1a 1a 1a 1a 1a 1a 1a 7c 7a 7b 2c 1a 2h 2f 2g 2b 2a 2d
3P 1a 2a 2b 2c 2d 2e 2f 2g 2h 7b 7c 7a 4a 2i 4b 4c 4d 4e 4f 4g
5P 1a 2a 2b 2c 2d 2e 2f 2g 2h 7c 7a 7b 4a 2i 4b 4c 4d 4e 4f 4g
7P 1a 2a 2b 2c 2d 2e 2f 2g 2h 1a 1a 1a 4a 2i 4b 4c 4d 4e 4f 4g
X.1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
X.2 1 1 1 1 1 1 1 1 1 1 1 1 -1 -1 -1 -1 -1 -1 -1 -1
X.3 2 2 2 2 2 2 2 2 2 A C B . . . . . . . .
X.4 2 2 2 2 2 2 2 2 2 B A C . . . . . . . .
X.5 2 2 2 2 2 2 2 2 2 C B A . . . . . . . .
X.6 7 -5 3 3 -1 -1 3 -1 -1 . . . -1 1 1 -1 1 -1 -1 1
X.7 7 -5 3 3 -1 -1 3 -1 -1 . . . 1 -1 -1 1 -1 1 1 -1
X.8 7 -1 -5 3 3 -1 -1 -1 3 . . . -1 1 -1 1 1 -1 1 -1
X.9 7 -1 -5 3 3 -1 -1 -1 3 . . . 1 -1 1 -1 -1 1 -1 1
X.10 7 -1 3 -1 -1 -1 -5 3 3 . . . -1 -1 1 1 1 1 -1 -1
X.11 7 -1 3 -1 -1 -1 -5 3 3 . . . 1 1 -1 -1 -1 -1 1 1
X.12 7 3 3 -1 3 -1 -1 -5 -1 . . . -1 -1 -1 -1 1 1 1 1
X.13 7 3 3 -1 3 -1 -1 -5 -1 . . . 1 1 1 1 -1 -1 -1 -1
X.14 7 -1 -1 -5 3 -1 3 3 -1 . . . -1 1 1 -1 -1 1 1 -1
X.15 7 -1 -1 -5 3 -1 3 3 -1 . . . 1 -1 -1 1 1 -1 -1 1
X.16 7 3 -1 -1 -5 -1 3 -1 3 . . . -1 -1 1 1 -1 -1 1 1
X.17 7 3 -1 -1 -5 -1 3 -1 3 . . . 1 1 -1 -1 1 1 -1 -1
X.18 7 3 -1 3 -1 -1 -1 3 -5 . . . -1 1 -1 1 -1 1 -1 1
X.19 7 3 -1 3 -1 -1 -1 3 -5 . . . 1 -1 1 -1 1 -1 1 -1
X.20 14 -2 -2 -2 -2 6 -2 -2 -2 . . . . . . . . . . .
A = E(7)+E(7)^6
B = E(7)^2+E(7)^5
C = E(7)^3+E(7)^4
|