Group action invariants
| Degree $n$ : | $14$ | |
| Transitive number $t$ : | $47$ | |
| Group : | $A_7\times C_2$ | |
| CHM label : | $2[x]A(7)$ | |
| Parity: | $-1$ | |
| Primitive: | No | |
| Nilpotency class: | $-1$ (not nilpotent) | |
| Generators: | (3,13,5)(6,12,10), (1,8)(2,9)(3,10)(4,11)(5,12)(6,13)(7,14), (1,3,5,7,9,11,13)(2,4,6,8,10,12,14) | |
| $|\Aut(F/K)|$: | $2$ |
Low degree resolvents
|G/N| Galois groups for stem field(s) 2: $C_2$ 2520: $A_7$ Resolvents shown for degrees $\leq 47$
Subfields
Degree 2: $C_2$
Degree 7: $A_7$
Low degree siblings
30T566 x 2, 42T409, 42T410Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy Classes
| Cycle Type | Size | Order | Representative |
| $ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ | $1$ | $1$ | $()$ |
| $ 2, 2, 2, 2, 2, 2, 2 $ | $1$ | $2$ | $( 1, 8)( 2, 9)( 3,10)( 4,11)( 5,12)( 6,13)( 7,14)$ |
| $ 2, 2, 2, 2, 1, 1, 1, 1, 1, 1 $ | $105$ | $2$ | $( 1, 9)( 2, 8)( 3,11)( 4,10)$ |
| $ 2, 2, 2, 2, 2, 2, 2 $ | $105$ | $2$ | $( 1, 2)( 3, 4)( 5,12)( 6,13)( 7,14)( 8, 9)(10,11)$ |
| $ 3, 3, 1, 1, 1, 1, 1, 1, 1, 1 $ | $70$ | $3$ | $( 1, 9, 3)( 2,10, 8)$ |
| $ 6, 2, 2, 2, 2 $ | $70$ | $6$ | $( 1, 2, 3, 8, 9,10)( 4,11)( 5,12)( 6,13)( 7,14)$ |
| $ 3, 3, 2, 2, 2, 2 $ | $210$ | $6$ | $( 1, 9, 3)( 2,10, 8)( 4,12)( 5,11)( 6,14)( 7,13)$ |
| $ 6, 2, 2, 2, 2 $ | $210$ | $6$ | $( 1, 2, 3, 8, 9,10)( 4, 5)( 6, 7)(11,12)(13,14)$ |
| $ 3, 3, 3, 3, 1, 1 $ | $280$ | $3$ | $( 1, 9, 3)( 2,10, 8)( 4,12, 6)( 5,13,11)$ |
| $ 6, 6, 2 $ | $280$ | $6$ | $( 1, 2, 3, 8, 9,10)( 4, 5, 6,11,12,13)( 7,14)$ |
| $ 4, 4, 2, 2, 1, 1 $ | $630$ | $4$ | $( 1, 9, 3,11)( 2,10, 4, 8)( 5,13)( 6,12)$ |
| $ 4, 4, 2, 2, 2 $ | $630$ | $4$ | $( 1, 2, 3, 4)( 5, 6)( 7,14)( 8, 9,10,11)(12,13)$ |
| $ 5, 5, 1, 1, 1, 1 $ | $504$ | $5$ | $( 1, 9, 3,11, 5)( 2,10, 4,12, 8)$ |
| $ 10, 2, 2 $ | $504$ | $10$ | $( 1, 2, 3, 4, 5, 8, 9,10,11,12)( 6,13)( 7,14)$ |
| $ 7, 7 $ | $360$ | $7$ | $( 1, 9, 3,11, 5,13, 7)( 2,10, 4,12, 6,14, 8)$ |
| $ 14 $ | $360$ | $14$ | $( 1, 2, 3, 4, 5, 6, 7, 8, 9,10,11,12,13,14)$ |
| $ 7, 7 $ | $360$ | $7$ | $( 1, 9, 3,11, 5, 7,13)( 2,10, 4,12,14, 6, 8)$ |
| $ 14 $ | $360$ | $14$ | $( 1, 2, 3, 4, 5,14,13, 8, 9,10,11,12, 7, 6)$ |
Group invariants
| Order: | $5040=2^{4} \cdot 3^{2} \cdot 5 \cdot 7$ | |
| Cyclic: | No | |
| Abelian: | No | |
| Solvable: | No | |
| GAP id: | Data not available |
| Character table: |
2 4 4 4 4 3 3 3 3 1 1 3 3 1 1 1 1 1 1
3 2 2 1 1 2 2 1 1 2 2 . . . . . . . .
5 1 1 . . . . . . . . . . 1 1 . . . .
7 1 1 . . . . . . . . . . . . 1 1 1 1
1a 2a 2b 2c 3a 6a 6b 6c 3b 6d 4a 4b 5a 10a 7a 14a 7b 14b
2P 1a 1a 1a 1a 3a 3a 3a 3a 3b 3b 2b 2b 5a 5a 7a 7a 7b 7b
3P 1a 2a 2b 2c 1a 2a 2b 2c 1a 2a 4a 4b 5a 10a 7b 14b 7a 14a
5P 1a 2a 2b 2c 3a 6a 6b 6c 3b 6d 4a 4b 1a 2a 7b 14b 7a 14a
7P 1a 2a 2b 2c 3a 6a 6b 6c 3b 6d 4a 4b 5a 10a 1a 2a 1a 2a
11P 1a 2a 2b 2c 3a 6a 6b 6c 3b 6d 4a 4b 5a 10a 7a 14a 7b 14b
13P 1a 2a 2b 2c 3a 6a 6b 6c 3b 6d 4a 4b 5a 10a 7b 14b 7a 14a
X.1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
X.2 1 -1 1 -1 1 -1 1 -1 1 -1 1 -1 1 -1 1 -1 1 -1
X.3 6 6 2 2 3 3 -1 -1 . . . . 1 1 -1 -1 -1 -1
X.4 6 -6 2 -2 3 -3 -1 1 . . . . 1 -1 -1 1 -1 1
X.5 10 -10 -2 2 1 -1 1 -1 1 -1 . . . . A -A /A -/A
X.6 10 -10 -2 2 1 -1 1 -1 1 -1 . . . . /A -/A A -A
X.7 10 10 -2 -2 1 1 1 1 1 1 . . . . A A /A /A
X.8 10 10 -2 -2 1 1 1 1 1 1 . . . . /A /A A A
X.9 14 14 2 2 2 2 2 2 -1 -1 . . -1 -1 . . . .
X.10 14 14 2 2 -1 -1 -1 -1 2 2 . . -1 -1 . . . .
X.11 14 -14 2 -2 2 -2 2 -2 -1 1 . . -1 1 . . . .
X.12 14 -14 2 -2 -1 1 -1 1 2 -2 . . -1 1 . . . .
X.13 15 15 -1 -1 3 3 -1 -1 . . -1 -1 . . 1 1 1 1
X.14 15 -15 -1 1 3 -3 -1 1 . . -1 1 . . 1 -1 1 -1
X.15 21 21 1 1 -3 -3 1 1 . . -1 -1 1 1 . . . .
X.16 21 -21 1 -1 -3 3 1 -1 . . -1 1 1 -1 . . . .
X.17 35 35 -1 -1 -1 -1 -1 -1 -1 -1 1 1 . . . . . .
X.18 35 -35 -1 1 -1 1 -1 1 -1 1 1 -1 . . . . . .
A = E(7)^3+E(7)^5+E(7)^6
= (-1-Sqrt(-7))/2 = -1-b7
|