Group action invariants
| Degree $n$ : | $14$ | |
| Transitive number $t$ : | $4$ | |
| Group : | $F_7$ | |
| CHM label : | $2[1/2]F_{42}(7)$ | |
| Parity: | $-1$ | |
| Primitive: | No | |
| Nilpotency class: | $-1$ (not nilpotent) | |
| Generators: | (1,9,11)(2,4,8)(3,13,5)(6,12,10), (1,6)(2,5)(3,4)(7,14)(8,13)(9,12)(10,11), (1,3,5,7,9,11,13)(2,4,6,8,10,12,14) | |
| $|\Aut(F/K)|$: | $2$ |
Low degree resolvents
|G/N| Galois groups for stem field(s) 2: $C_2$ 3: $C_3$ 6: $C_6$ Resolvents shown for degrees $\leq 47$
Subfields
Degree 2: $C_2$
Degree 7: $F_7$
Low degree siblings
7T4, 21T4, 42T4Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy Classes
| Cycle Type | Size | Order | Representative |
| $ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ | $1$ | $1$ | $()$ |
| $ 3, 3, 3, 3, 1, 1 $ | $7$ | $3$ | $( 2,10,12)( 3, 5, 9)( 4,14, 6)( 7,13,11)$ |
| $ 3, 3, 3, 3, 1, 1 $ | $7$ | $3$ | $( 2,12,10)( 3, 9, 5)( 4, 6,14)( 7,11,13)$ |
| $ 2, 2, 2, 2, 2, 2, 2 $ | $7$ | $2$ | $( 1, 2)( 3,14)( 4,13)( 5,12)( 6,11)( 7,10)( 8, 9)$ |
| $ 6, 6, 2 $ | $7$ | $6$ | $( 1, 2, 5,14,13,10)( 3, 8, 9,12, 7, 6)( 4,11)$ |
| $ 6, 6, 2 $ | $7$ | $6$ | $( 1, 2, 7, 4, 3,12)( 5, 8, 9,14,11,10)( 6,13)$ |
| $ 7, 7 $ | $6$ | $7$ | $( 1, 3, 5, 7, 9,11,13)( 2, 4, 6, 8,10,12,14)$ |
Group invariants
| Order: | $42=2 \cdot 3 \cdot 7$ | |
| Cyclic: | No | |
| Abelian: | No | |
| Solvable: | Yes | |
| GAP id: | [42, 1] |
| Character table: |
2 1 1 1 1 1 1 .
3 1 1 1 1 1 1 .
7 1 . . . . . 1
1a 3a 3b 2a 6a 6b 7a
2P 1a 3b 3a 1a 3a 3b 7a
3P 1a 1a 1a 2a 2a 2a 7a
5P 1a 3b 3a 2a 6b 6a 7a
7P 1a 3a 3b 2a 6a 6b 1a
X.1 1 1 1 1 1 1 1
X.2 1 1 1 -1 -1 -1 1
X.3 1 A /A -1 -/A -A 1
X.4 1 /A A -1 -A -/A 1
X.5 1 A /A 1 /A A 1
X.6 1 /A A 1 A /A 1
X.7 6 . . . . . -1
A = E(3)^2
= (-1-Sqrt(-3))/2 = -1-b3
|