Group action invariants
| Degree $n$ : | $14$ | |
| Transitive number $t$ : | $31$ | |
| CHM label : | $[D(7)^{2}:3_{3}]2$ | |
| Parity: | $-1$ | |
| Primitive: | No | |
| Nilpotency class: | $-1$ (not nilpotent) | |
| Generators: | (2,4,6,8,10,12,14), (2,12)(4,10)(6,8), (1,8)(2,9)(3,10)(4,11)(5,12)(6,13)(7,14), (1,11,9)(2,4,8)(3,5,13)(6,12,10) | |
| $|\Aut(F/K)|$: | $1$ |
Low degree resolvents
|G/N| Galois groups for stem field(s) 2: $C_2$ x 3 4: $C_2^2$ 6: $S_3$ 8: $D_{4}$ 12: $D_{6}$ 24: $(C_6\times C_2):C_2$ Resolvents shown for degrees $\leq 47$
Subfields
Degree 2: $C_2$
Degree 7: None
Low degree siblings
28T133, 28T134, 28T135, 42T194, 42T196Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy Classes
| Cycle Type | Size | Order | Representative |
| $ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ | $1$ | $1$ | $()$ |
| $ 7, 1, 1, 1, 1, 1, 1, 1 $ | $12$ | $7$ | $( 2, 4, 6, 8,10,12,14)$ |
| $ 7, 7 $ | $12$ | $7$ | $( 1, 3, 5, 7, 9,11,13)( 2, 4, 6, 8,10,12,14)$ |
| $ 7, 7 $ | $12$ | $7$ | $( 1, 3, 5, 7, 9,11,13)( 2, 8,14, 6,12, 4,10)$ |
| $ 7, 7 $ | $12$ | $7$ | $( 1, 3, 5, 7, 9,11,13)( 2, 6,10,14, 4, 8,12)$ |
| $ 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1 $ | $14$ | $2$ | $( 4,14)( 6,12)( 8,10)$ |
| $ 7, 2, 2, 2, 1 $ | $84$ | $14$ | $( 1, 3, 5, 7, 9,11,13)( 4,14)( 6,12)( 8,10)$ |
| $ 2, 2, 2, 2, 2, 2, 1, 1 $ | $49$ | $2$ | $( 3,13)( 4,14)( 5,11)( 6,12)( 7, 9)( 8,10)$ |
| $ 3, 3, 3, 3, 1, 1 $ | $98$ | $3$ | $( 3, 5, 9)( 4,10, 6)( 7,13,11)( 8,12,14)$ |
| $ 6, 3, 3, 1, 1 $ | $98$ | $6$ | $( 3, 5, 9)( 4, 8, 6,14,10,12)( 7,13,11)$ |
| $ 6, 3, 3, 1, 1 $ | $98$ | $6$ | $( 3,11, 9,13, 5, 7)( 4,10, 6)( 8,12,14)$ |
| $ 6, 6, 1, 1 $ | $98$ | $6$ | $( 3,11, 9,13, 5, 7)( 4, 8, 6,14,10,12)$ |
| $ 2, 2, 2, 2, 2, 2, 2 $ | $42$ | $2$ | $( 1, 8)( 2, 9)( 3,10)( 4,11)( 5,12)( 6,13)( 7,14)$ |
| $ 14 $ | $84$ | $14$ | $( 1,10, 3,12, 5,14, 7, 2, 9, 4,11, 6,13, 8)$ |
| $ 14 $ | $84$ | $14$ | $( 1,14, 7, 6,13,12, 5, 4,11,10, 3, 2, 9, 8)$ |
| $ 14 $ | $84$ | $14$ | $( 1,12, 5, 2, 9, 6,13,10, 3,14, 7, 4,11, 8)$ |
| $ 4, 4, 4, 2 $ | $294$ | $4$ | $( 1,10, 3, 8)( 2, 9)( 4,11,14, 7)( 5, 6,13,12)$ |
Group invariants
| Order: | $1176=2^{3} \cdot 3 \cdot 7^{2}$ | |
| Cyclic: | No | |
| Abelian: | No | |
| Solvable: | Yes | |
| GAP id: | [1176, 216] |
| Character table: |
2 3 1 1 1 1 2 1 3 2 2 2 2 2 1 1 1 2
3 1 . . . . 1 . 1 1 1 1 1 . . . . .
7 2 2 2 2 2 1 1 . . . . . 1 1 1 1 .
1a 7a 7b 7c 7d 2a 14a 2b 3a 6a 6b 6c 2c 14b 14c 14d 4a
2P 1a 7a 7c 7d 7b 1a 7a 1a 3a 3a 3a 3a 1a 7b 7d 7c 2b
3P 1a 7a 7d 7b 7c 2a 14a 2b 1a 2a 2a 2b 2c 14c 14d 14b 4a
5P 1a 7a 7c 7d 7b 2a 14a 2b 3a 6b 6a 6c 2c 14d 14b 14c 4a
7P 1a 1a 1a 1a 1a 2a 2a 2b 3a 6a 6b 6c 2c 2c 2c 2c 4a
11P 1a 7a 7d 7b 7c 2a 14a 2b 3a 6b 6a 6c 2c 14c 14d 14b 4a
13P 1a 7a 7b 7c 7d 2a 14a 2b 3a 6a 6b 6c 2c 14b 14c 14d 4a
X.1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
X.2 1 1 1 1 1 -1 -1 1 1 -1 -1 1 -1 -1 -1 -1 1
X.3 1 1 1 1 1 -1 -1 1 1 -1 -1 1 1 1 1 1 -1
X.4 1 1 1 1 1 1 1 1 1 1 1 1 -1 -1 -1 -1 -1
X.5 2 2 2 2 2 -2 -2 2 -1 1 1 -1 . . . . .
X.6 2 2 2 2 2 2 2 2 -1 -1 -1 -1 . . . . .
X.7 2 2 2 2 2 . . -2 2 . . -2 . . . . .
X.8 2 2 2 2 2 . . -2 -1 D -D 1 . . . . .
X.9 2 2 2 2 2 . . -2 -1 -D D 1 . . . . .
X.10 12 5 -2 -2 -2 -6 1 . . . . . . . . . .
X.11 12 5 -2 -2 -2 6 -1 . . . . . . . . . .
X.12 12 -2 A C B . . . . . . . -2 E F G .
X.13 12 -2 B A C . . . . . . . -2 F G E .
X.14 12 -2 C B A . . . . . . . -2 G E F .
X.15 12 -2 A C B . . . . . . . 2 -E -F -G .
X.16 12 -2 B A C . . . . . . . 2 -F -G -E .
X.17 12 -2 C B A . . . . . . . 2 -G -E -F .
A = -2*E(7)+E(7)^3+E(7)^4-2*E(7)^6
B = E(7)^2-2*E(7)^3-2*E(7)^4+E(7)^5
C = E(7)-2*E(7)^2-2*E(7)^5+E(7)^6
D = -E(3)+E(3)^2
= -Sqrt(-3) = -i3
E = -E(7)^2-E(7)^5
F = -E(7)-E(7)^6
G = -E(7)^3-E(7)^4
|