Group action invariants
| Degree $n$ : | $14$ | |
| Transitive number $t$ : | $35$ | |
| CHM label : | $[2^{6}]F_{21}(7)$ | |
| Parity: | $1$ | |
| Primitive: | No | |
| Nilpotency class: | $-1$ (not nilpotent) | |
| Generators: | (1,9,11)(2,4,8)(3,13,5)(6,12,10), (2,9)(7,14), (1,3,5,7,9,11,13)(2,4,6,8,10,12,14) | |
| $|\Aut(F/K)|$: | $2$ |
Low degree resolvents
|G/N| Galois groups for stem field(s) 3: $C_3$ 21: $C_7:C_3$ 168: $C_2^3:(C_7: C_3)$ x 2 Resolvents shown for degrees $\leq 47$
Subfields
Degree 2: None
Degree 7: $C_7:C_3$
Low degree siblings
28T154, 28T155 x 2, 28T157, 42T202, 42T204, 42T205Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy Classes
| Cycle Type | Size | Order | Representative |
| $ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ | $1$ | $1$ | $()$ |
| $ 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ | $21$ | $2$ | $( 1, 8)( 2, 9)$ |
| $ 2, 2, 2, 2, 1, 1, 1, 1, 1, 1 $ | $21$ | $2$ | $( 1, 8)( 2, 9)( 3,10)( 4,11)$ |
| $ 2, 2, 2, 2, 2, 2, 1, 1 $ | $7$ | $2$ | $( 1, 8)( 2, 9)( 3,10)( 4,11)( 5,12)( 6,13)$ |
| $ 2, 2, 2, 2, 1, 1, 1, 1, 1, 1 $ | $7$ | $2$ | $( 1, 8)( 2, 9)( 3,10)( 6,13)$ |
| $ 2, 2, 2, 2, 1, 1, 1, 1, 1, 1 $ | $7$ | $2$ | $( 1, 8)( 2, 9)( 3,10)( 5,12)$ |
| $ 7, 7 $ | $192$ | $7$ | $( 1,13, 4, 9, 7,12,10)( 2,14, 5, 3, 8, 6,11)$ |
| $ 7, 7 $ | $192$ | $7$ | $( 1, 9,10, 4,12,13, 7)( 2, 3,11, 5, 6,14, 8)$ |
| $ 3, 3, 3, 3, 1, 1 $ | $112$ | $3$ | $( 2,10, 5)( 3,12, 9)( 4,14, 6)( 7,13,11)$ |
| $ 6, 3, 3, 2 $ | $112$ | $6$ | $( 1, 8)( 2,10, 5, 9, 3,12)( 4,14, 6)( 7,13,11)$ |
| $ 6, 6, 1, 1 $ | $112$ | $6$ | $( 2, 3,12, 9,10, 5)( 4,14, 6,11, 7,13)$ |
| $ 6, 3, 3, 2 $ | $112$ | $6$ | $( 1, 8)( 2, 3,12)( 4,14, 6,11, 7,13)( 5, 9,10)$ |
| $ 3, 3, 3, 3, 1, 1 $ | $112$ | $3$ | $( 2, 5,10)( 3, 9,12)( 4, 6,14)( 7,11,13)$ |
| $ 6, 3, 3, 2 $ | $112$ | $6$ | $( 1, 8)( 2, 5,10, 9,12, 3)( 4, 6,14)( 7,11,13)$ |
| $ 6, 6, 1, 1 $ | $112$ | $6$ | $( 2, 5, 3, 9,12,10)( 4, 6,14,11,13, 7)$ |
| $ 6, 3, 3, 2 $ | $112$ | $6$ | $( 1, 8)( 2, 5, 3)( 4, 6,14,11,13, 7)( 9,12,10)$ |
Group invariants
| Order: | $1344=2^{6} \cdot 3 \cdot 7$ | |
| Cyclic: | No | |
| Abelian: | No | |
| Solvable: | Yes | |
| GAP id: | [1344, 11691] |
| Character table: |
2 6 6 6 6 6 6 . . 2 2 2 2 2 2 2 2
3 1 . . 1 1 1 . . 1 1 1 1 1 1 1 1
7 1 . . . . . 1 1 . . . . . . . .
1a 2a 2b 2c 2d 2e 7a 7b 3a 6a 6b 6c 3b 6d 6e 6f
2P 1a 1a 1a 1a 1a 1a 7a 7b 3b 3b 3b 3b 3a 3a 3a 3a
3P 1a 2a 2b 2c 2d 2e 7b 7a 1a 2e 2c 2d 1a 2e 2c 2d
5P 1a 2a 2b 2c 2d 2e 7b 7a 3b 6d 6e 6f 3a 6a 6b 6c
7P 1a 2a 2b 2c 2d 2e 1a 1a 3a 6a 6b 6c 3b 6d 6e 6f
X.1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
X.2 1 1 1 1 1 1 1 1 B B B B /B /B /B /B
X.3 1 1 1 1 1 1 1 1 /B /B /B /B B B B B
X.4 3 3 3 3 3 3 A /A . . . . . . . .
X.5 3 3 3 3 3 3 /A A . . . . . . . .
X.6 7 -1 -1 -1 -1 7 . . 1 1 -1 -1 1 1 -1 -1
X.7 7 -1 -1 -1 7 -1 . . 1 -1 -1 1 1 -1 -1 1
X.8 7 3 -1 -5 -1 -1 . . 1 -1 1 -1 1 -1 1 -1
X.9 7 -1 -1 -1 -1 7 . . B B -B -B /B /B -/B -/B
X.10 7 -1 -1 -1 -1 7 . . /B /B -/B -/B B B -B -B
X.11 7 -1 -1 -1 7 -1 . . B -B -B B /B -/B -/B /B
X.12 7 -1 -1 -1 7 -1 . . /B -/B -/B /B B -B -B B
X.13 7 3 -1 -5 -1 -1 . . B -B B -B /B -/B /B -/B
X.14 7 3 -1 -5 -1 -1 . . /B -/B /B -/B B -B B -B
X.15 21 1 -3 9 -3 -3 . . . . . . . . . .
X.16 21 -3 5 -3 -3 -3 . . . . . . . . . .
A = E(7)^3+E(7)^5+E(7)^6
= (-1-Sqrt(-7))/2 = -1-b7
B = E(3)^2
= (-1-Sqrt(-3))/2 = -1-b3
|