Group action invariants
| Degree $n$ : | $14$ | |
| Transitive number $t$ : | $49$ | |
| Group : | $S_7\times C_2$ | |
| CHM label : | $2[x]S(7)$ | |
| Parity: | $-1$ | |
| Primitive: | No | |
| Nilpotency class: | $-1$ (not nilpotent) | |
| Generators: | (3,5)(10,12), (1,8)(2,9)(3,10)(4,11)(5,12)(6,13)(7,14), (1,3,5,7,9,11,13)(2,4,6,8,10,12,14) | |
| $|\Aut(F/K)|$: | $2$ |
Low degree resolvents
|G/N| Galois groups for stem field(s) 2: $C_2$ x 3 4: $C_2^2$ 5040: $S_7$ Resolvents shown for degrees $\leq 47$
Subfields
Degree 2: $C_2$
Degree 7: $S_7$
Low degree siblings
14T49, 28T363, 42T549 x 2, 42T550 x 2Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy Classes
| Cycle Type | Size | Order | Representative |
| $ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ | $1$ | $1$ | $()$ |
| $ 2, 2, 2, 2, 2, 2, 2 $ | $1$ | $2$ | $( 1, 8)( 2, 9)( 3,10)( 4,11)( 5,12)( 6,13)( 7,14)$ |
| $ 3, 3, 3, 3, 1, 1 $ | $280$ | $3$ | $( 1, 9,13)( 2, 6, 8)( 3,11, 5)( 4,12,10)$ |
| $ 6, 6, 2 $ | $280$ | $6$ | $( 1, 2,13, 8, 9, 6)( 3, 4, 5,10,11,12)( 7,14)$ |
| $ 3, 3, 1, 1, 1, 1, 1, 1, 1, 1 $ | $70$ | $3$ | $( 3, 5,11)( 4,10,12)$ |
| $ 6, 2, 2, 2, 2 $ | $70$ | $6$ | $( 1, 8)( 2, 9)( 3,12,11,10, 5, 4)( 6,13)( 7,14)$ |
| $ 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ | $21$ | $2$ | $( 6,14)( 7,13)$ |
| $ 2, 2, 2, 2, 2, 2, 2 $ | $21$ | $2$ | $( 1, 8)( 2, 9)( 3,10)( 4,11)( 5,12)( 6, 7)(13,14)$ |
| $ 3, 3, 2, 2, 1, 1, 1, 1 $ | $420$ | $6$ | $( 3, 5,11)( 4,10,12)( 6,14)( 7,13)$ |
| $ 6, 2, 2, 2, 2 $ | $420$ | $6$ | $( 1, 8)( 2, 9)( 3,12,11,10, 5, 4)( 6, 7)(13,14)$ |
| $ 2, 2, 2, 2, 1, 1, 1, 1, 1, 1 $ | $105$ | $2$ | $( 1,13)( 2,14)( 6, 8)( 7, 9)$ |
| $ 2, 2, 2, 2, 2, 2, 2 $ | $105$ | $2$ | $( 1, 6)( 2, 7)( 3,10)( 4,11)( 5,12)( 8,13)( 9,14)$ |
| $ 4, 4, 1, 1, 1, 1, 1, 1 $ | $210$ | $4$ | $( 1, 7,13, 9)( 2, 8,14, 6)$ |
| $ 4, 4, 2, 2, 2 $ | $210$ | $4$ | $( 1,14,13, 2)( 3,10)( 4,11)( 5,12)( 6, 9, 8, 7)$ |
| $ 2, 2, 2, 2, 2, 2, 1, 1 $ | $105$ | $2$ | $( 1, 7)( 2, 6)( 3,11)( 4,10)( 8,14)( 9,13)$ |
| $ 2, 2, 2, 2, 2, 2, 2 $ | $105$ | $2$ | $( 1,14)( 2,13)( 3, 4)( 5,12)( 6, 9)( 7, 8)(10,11)$ |
| $ 3, 3, 2, 2, 2, 2 $ | $210$ | $6$ | $( 1,13)( 2,14)( 3,11, 5)( 4,12,10)( 6, 8)( 7, 9)$ |
| $ 6, 2, 2, 2, 2 $ | $210$ | $6$ | $( 1, 6)( 2, 7)( 3, 4, 5,10,11,12)( 8,13)( 9,14)$ |
| $ 4, 4, 3, 3 $ | $420$ | $12$ | $( 1, 9,13, 7)( 2, 6,14, 8)( 3, 5,11)( 4,10,12)$ |
| $ 6, 4, 4 $ | $420$ | $12$ | $( 1, 2,13,14)( 3,12,11,10, 5, 4)( 6, 7, 8, 9)$ |
| $ 4, 4, 2, 2, 1, 1 $ | $630$ | $4$ | $( 1, 9,13, 7)( 2, 6,14, 8)( 3,11)( 4,10)$ |
| $ 4, 4, 2, 2, 2 $ | $630$ | $4$ | $( 1, 2,13,14)( 3, 4)( 5,12)( 6, 7, 8, 9)(10,11)$ |
| $ 5, 5, 1, 1, 1, 1 $ | $504$ | $5$ | $( 1, 5, 3,11, 9)( 2, 8,12,10, 4)$ |
| $ 10, 2, 2 $ | $504$ | $10$ | $( 1,12, 3, 4, 9, 8, 5,10,11, 2)( 6,13)( 7,14)$ |
| $ 5, 5, 2, 2 $ | $504$ | $10$ | $( 1,11, 5, 9, 3)( 2,10, 8, 4,12)( 6,14)( 7,13)$ |
| $ 10, 2, 2 $ | $504$ | $10$ | $( 1, 4, 5, 2, 3, 8,11,12, 9,10)( 6, 7)(13,14)$ |
| $ 7, 7 $ | $720$ | $7$ | $( 1,11, 3, 5, 7, 9,13)( 2, 6, 8, 4,10,12,14)$ |
| $ 14 $ | $720$ | $14$ | $( 1, 4, 3,12, 7, 2,13, 8,11,10, 5,14, 9, 6)$ |
| $ 6, 6, 1, 1 $ | $840$ | $6$ | $( 1, 5, 3,13,11, 7)( 4,14, 8,12,10, 6)$ |
| $ 6, 6, 2 $ | $840$ | $6$ | $( 1,12, 3, 6,11,14)( 2, 9)( 4, 7, 8, 5,10,13)$ |
Group invariants
| Order: | $10080=2^{5} \cdot 3^{2} \cdot 5 \cdot 7$ | |
| Cyclic: | No | |
| Abelian: | No | |
| Solvable: | No | |
| GAP id: | Data not available |
| Character table: Data not available. |